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ORIGINAL FOREWORD 
 
This Guide has been written to meet the need for a basic advisory document for users of force instrumentation. 
As in other fields of measurement, a consistent and harmonised approach is increasingly important, as is a 
common understanding of the terms used to define and describe force measurement. This Guide brings together 
information which exists already in the public domain but is in many cases difficult to obtain, poorly expressed, 
or widely misunderstood. 
 
The Guide is intended to be practical; readily applicable; widely acceptable; accessible; and to contain objective 
criteria against which good practice can be judged. The advice given here is carefully selected to represent 
conventional good practice in force measurement, to be consistent with recognised standard specifications 
relevant to force, and to be free from commercial bias. 
 
While this document provides a general introduction to force measurement it is not an in-depth scientific 
treatment of the subject. The further information sources section is provided as a starting point for those 
wishing to develop a more detailed understanding. 
 
It is in the interest of many groups and individuals that information about good measurement practices should 
reach all those who can contribute and benefit. Accordingly, this document has been written in collaboration 
between the Institute of Measurement and Control, the National Physical Laboratory and an independent panel 
of experts involved in the supply, calibration and use of force measurement systems, and in consultation with a 
wide circle of users in the UK and further afield. The creation of the document was made possible by support 
from the National Measurement System Policy Unit of the Department of Trade and Industry, and by the 
voluntary effort of many of the individuals involved. All readers of this Guide owe a debt of gratitude to those 
who have contributed to its preparation. 
 

 
C.R. Howard 
President 
The Institute of Measurement and Control 
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Guide to the Measurement of Force 
1 SCOPE 
 
This guide aims to help anyone wishing to measure force in any industrial or laboratory environment. It is 
essentially a guide for the user of the measurement and should help him or her to understand the range of 
measurement techniques available, how to characterise the requirements of his or her particular problem, and 
how to communicate those needs to manufacturers and suppliers of force measurement equipment. It also aims 
to give an understanding of the needs for, and methods of, calibrating, operating and maintaining force 
measurement systems. 
 
The techniques described cover the majority of problems encountered in force measurement, but where the 
guide cannot go into sufficient detail, the reader is referred to further published documents. 
 
The range of forces covered is from approximately 10-3 newtons (1 mN) to 109 newtons (1 GN), and those forces 
may be static or dynamic, and single or multi-axis. 
 
The guide is to the measurement of force, including the use of load cells, but force measurement is frequently an 
integral part of the measurement of weight, torque, impact, and acceleration. The guide does not enter into the 
details of the metrological requirements and problems of those applications, but is of direct use in the way the 
force measurement system is designed and applied to those needs. 
 
 

2 INTRODUCTION 
 
The forces acting within and between parts of a mechanism are fundamental to the safety, assembly, and use of 
any piece of equipment, whether that equipment be freely acting or an integral part of a process. The 
measurement of those forces is vital to understanding and monitoring the activity which the machine is designed 
to undertake. 
 
Force measurement is needed in many industries, and though the precision required may vary from a few 
percent to a few parts per million, the general approaches to good practice are common if the user is to achieve a 
reliable measurement of the precision that he or she requires. Good practice leads to good value for money, and 
contributes to the long-term reliability of the device. A number of examples are used in the text to help in 
understanding the concepts and techniques described, but these should not be regarded as limiting. There are 
many more industries and applications which need force measurement than can be explicitly mentioned here. 
 
To make reliable and accurate measurements of force, it is necessary to use appropriate measurement 
techniques in a sound manner. This guide is written such that a relatively inexperienced user may expect to 
follow through in a sequential fashion and learn these ‘tools of the trade’. For the benefit of more experienced 
practitioners, the guide has an extensive index to help in its use as an aide-memoire. Certain words and phrases 
are used very specifically in measurement, an area of science known as metrology. In this guide these terms are 
clearly defined when they are first met in the text (where they are in bold italic typeface – like ‘metrology,’) and 
a reference to the definition is given in the index. Many of the general definitions are gathered together in 
Section 3. 
 
This guide is based entirely in the SI system of units, and the equations here should only be used with that 
coherent system of units. Although other units may still be encountered, the use of the newton is consistent with 
the international community, and eliminates much confusion and possible sources of error. 
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3 CONCEPTS IN FORCE MEASUREMENT 
 

3.1 The SI system of units 
 
It is conventional practice to express any measurable physical quantity as a numerical value associated with a 
unit of measure. The international system of units (known as SI) is coherent, meaning that there are no 
conversion factors in mathematical expressions linking a base unit with a derived unit, and it is widely accepted 
as the standard for national and international trade, science and engineering. In the SI system there are seven 
base units of which the three of main interest to us here are: 
 
 the metre, unit of length, symbol m 
 the kilogram, unit of mass, symbol kg 
 and the second, unit of time, symbol s 
 
Derived units are those units, such as force, which can be derived by mathematical combination of base units.  
 
To avoid the regular use of very long numbers, SI encourages the use of multiples of 1 000, (expressed as 103 in 
scientific notation) for large numbers, and multiples of 0.001 (or 10-3) for small numbers. Each of these 
multiplying factors has a specific symbol, some of which are shown in Table 1. In this way, for example, a force of 
75 400 000 N (seventy five million four hundred thousand newtons), can be written much more succinctly as 
75.4 MN (seventy five point four meganewtons), and a force of 0.057 N can be written as 57 mN (fifty seven 
millinewtons). There does remain one anomaly in the system because of the use of the kilogram as the base unit 
of mass rather than the gram. This anomaly means that in the measurement of mass the prefixes above 103 (kilo) 
do not apply, and instead the term tonne is used for 1 000 kg. 
 

Table 1. SI notation for large and small numbers 

Multiplying factor SI prefix Scientific notation 
   

1 000 000 000 000 Tera (T) 1012 
1 000 000 000 Giga (G) 109 

1 000 000 Mega (M) 106 
1 000 kilo (k) 103 
0.001 milli (m) 10-3 

0.000 001 micro () 10-6 
0.000 000 001 nano (n) 10-9 

0.000 000 000 001 pico (p) 10-12 

 
 
 

3.2 Force and other physical quantities 
 
3.2.1 Mass 
 
Mass is a measure of the amount of material in an object, being directly related to the number and type of atoms 
present in the object. Mass does not change with position, movement, or alteration of the body’s shape unless 
material is added or removed. The unit of mass in the SI system is the kilogram (kg) which is defined to be equal 
to the mass of the international prototype kilogram held at the International Bureau of Weights and Measures 
(Bureau International des Poids et Mesures - BIPM) in Paris. 
 
The measurement of mass is a subject of significant importance to trade, and is covered in a number of 
publications such as [22]. 
 
3.2.2 Force 
 
Force is a measure of the interaction between bodies. Force takes a number of forms including short-range 
atomic forces, electromagnetic, and gravitational forces. Force is a vector quantity, with both direction and 
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magnitude. If the forces acting on a body in equilibrium are summed around the periphery of the body then they 
add to zero. If there is any resultant force acting then the body is not in equilibrium and it will accelerate such 
that the rate of change of the body’s momentum (velocity times mass) is equal to the force. If the body is held 
stationary in some way, then there will be a reaction acting on the body from the support structure that is equal 
in magnitude and opposite in direction to the force imposed. Although the definition of force units (as given 
below) is based on acceleration of a free body, most force measurements are made on bodies in equilibrium, and 
are therefore measures of forces within a structure. Conceptually a structure can be ‘cut’ across any section and 
the forces acting within the body at that section are those which would act at the free surfaces if such a cut were 
made. This property is the basis of most force measurements – a physical support or link in a structure is 
replaced with a device that measures the forces acting at that point. 
 
As with any vector quantity, the force and reaction may be projected onto three orthogonal axes, and the 
equilibrium may be considered independently parallel to each of those axes. Frequently a force measurement 
system will react properly only to forces along its principal axis, and if this should not coincide exactly with the 
direction of the total applied force to be measured then an erroneous result may be generated. 
 
The SI unit of force is the newton (N); defined as the unit of force which would give to a mass of one kilogram an 
acceleration of 1 metre per second, per second. It is not convenient, in practice, to produce an acceleration of 1 
metre per second, per second acting on a mass of one kilogram in order to realise a standard of force of 1 
newton. Instead the practical realisation of the unit of force makes use of known masses which, when subjected 
to the effect of local gravitational force, exert a known force on an earth located support. The mechanical 
structure to handle and control such masses is known as a deadweight machine. 
 
Historically there has been a variety of units of force, and some approximate conversion factors to older units 
are given in Table 2. 
 

Table 2. Approximate conversion factors to some non-SI force units 

Unit Symbol Is equivalent to 
pound-force lbf 4.448 N 
ton-force tonf 9.964 kN 
kilogram-force (or kilopond) kgf (kp) 9.807 N 

 
 
3.2.3 Weight 
 
In the trading of goods, weight is taken to mean the same as mass, and is measured in kilograms. Scientifically, 
however, it is normal to state that the weight of a body is the gravitational force acting on it and hence it should 
be expressed in newtons, this force depending on the local acceleration due to gravity. To add to the confusion, a 
‘weight’ is an object, normally metallic, of known mass. Because of the confusion surrounding the term, it will 
not be used in this document except in the sense of referring to weighing as a process for determining the mass 
of an object.  
 
 
3.2.4 Load 
 
Load is a term frequently used in engineering to mean the force exerted on a surface or body. It is a word that 
will not be generally used here, except in the common usage of ‘load cell’ which is a commonly-used term for 
various types of force measurement transducer, and in the term overload for a force exceeding the rated 
capacity of a force measurement system.  
 

3.3 Measurement terminology 
 
The definitions used in this guide follow International standards in metrology [5]. In passing it is worth noting 
that even the word standard has two meanings. The first meaning is a material measure (often known as an 
artefact) such as the standard kilogram which is a particular carefully made and preserved metallic cylinder. 
The second meaning is a documentary standard such as BS 5233 that is a textual document representing a 
national or international agreement on meanings or methods. 
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For the measurement made by a force device to be of any use, the uncertainty of that measurement must be 
known. The uncertainty of measurement is an estimate that characterises the range of values within which the 
true value is believed to lie. There are several documents in the bibliography covering this subject in detail; the 
ISO guide [1] and associated documents [2] [3] [4] and a very helpful but less comprehensive guide from UKAS 
[26]. Note that uncertainties should be quoted at a level of confidence (for example 95 %) for them to be 
meaningful. A 95 % confidence level implies that the true value of the force has a 95 % chance of lying within the 
stated range.  
 
Performance criteria for a force measurement system are described by the manufacturer in terms of a 
specification which gives limits within which the behaviour of the instrument can be expected to fall. However, 
this performance is generally given for a production series, and cannot be relied upon for a specific device unless 
verified by calibration. A specification is not the same as a calibration, and is no substitute for one. 
 
Calibration is the process of comparing a measuring instrument output against a known reference input and is 
extensively discussed in Section 7. 
 

3.4 Force measurement systems 
 
A force measurement system is made up of a transducer and associated instrumentation. The transducer is 
subjected to the force to be measured, and some resultant change in the element is measured by the associated 
instrumentation. The instrumentation may power the transducer in some way and also may process the output 
from the transducer before it is shown on an indicator to be read by the user. Strictly a transducer is a device 
that receives a physical stimulus and changes it into another measurable physical quantity through a known 
relationship. In practice a force transducer is a chain of several transducers, for example the force may act upon 
a metal cylinder which is compressed by the force, the change in size alters the electrical resistance of a strain 
gauge bonded to the surface of the cylinder, and the instrumentation measures this change in resistance. In this 
guide the term force transducer will be used loosely to describe the part of the force measurement system which 
converts the applied force into an output which is measured by some associated instrumentation.  
 
For many types of force measurement system the term load cell is in common usage in place of force transducer. 
Also, the term device is from time to time used in place of transducer within the text of this guide to avoid 
distracting repetition of the word transducer. For the same reasons, the term measuring instrument will 
occasionally be used with the same meaning as force measurement system. 
 
As will be seen in the following sections, the instrumentation may be as simple as a dial gauge or as complex as 
a computer with associated analogue to digital converters and excitation circuitry. The indicated value is the 
output of the force measurement system, which may be in units of force or other units such as volts. If the 
indicated value is not in units of force, then the user may need to perform a calculation based on a calibration to 
obtain the calculated value. 
 
A force transducer is frequently built in as an integral part of a structure or machine, and many force calibration 
devices (see Section 7) are themselves machines. It is often therefore difficult to consider the force measurement 
system separately from the application and this has many effects on the procedures for design, calibration and 
operation of the system (see Sections 6 and 7). 
 

3.5 Characteristics of force measurement systems 
 

In the following sections various force measurement systems are mentioned with many different physical 
principles involved in their operation. The performance of these systems, however, can be described by a 
number of common characteristics and the behaviour of the system or the transducer may be expressed 
graphically by plotting the indicated output value against the applied force (known as a response curve). Figure 
1 shows an idealised response curve of a force measurement system to a force which is increased from zero to 
the rated capacity of the force measurement system and then back again to zero. The rated capacity is the 
maximum force that a force transducer is designed to measure. The example in the figure is only one of several 
ways to define these terms, for more detail see [13]. It should also be emphasised that all the terms used in this 
section may be applied independently to the transducer, the force measurement system as a whole, or some part 
of the system. The user should establish for any given application the way in which the terms are being used. 
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The deviation of the response curve from a straight line is magnified in the figure for the purposes of clarity. A 
commonly-used method of characterising the performance of this system is based on the fitting of a best-fit 
least-squares line to the increasing outputs, and stating the errors with respect to this line. Deviation of output 
from this best fit line during increasing loading is referred to as non-linearity and generally the largest deviation 
is given in the specifications of a system. At any given force, the difference in output between increasing and 
decreasing forces is defined as the hysteresis. The largest value of hysteresis is usually at the mid-range of the 
system. Sometimes it may be useful to combine the non-linearity and the hysteresis in a single figure. This is 
usually done by drawing two lines parallel to the best-fit line such that these lines enclose the increasing and 
decreasing curves. The larger difference of these two lines from the best-fit line is defined as the combined 
error. 
 

 

Figure 1. Typical output characteristics of a force measurement system 

 
Any difference between the indicated value of force and the true value is known as an error of measurement, 
and the errors noted above may be expressed as percentage of actual force applied or percentage of rated force. 
Full-scale output (fso), also known as span or rated output, is the output at rated capacity minus the output at 
zero applied force. Sensitivity is defined as the full-scale output divided by the rated capacity of a given load cell. 
 
The ability of a force measurement system to measure force consistently is covered by the concept of 
repeatability. Repeatability is defined broadly as the measure of agreement between the outputs of a force 
measurement system for repeated applications of a given force. The tests should be made by the same observer, 
with the same measuring equipment, on the same occasion, without mechanical or electrical disturbance, and 
calibration conditions such as temperature, alignment of loading and the timing of readings held constant as far 
as possible. Although many manufacturers quote a value for repeatability as a basic characteristic of a 
transducer, it can be seen from the definition that repeatability should not be considered as such. The value 
obtained for a given force transducer in a given force standard machine will depend not only on the true 
characteristics of the device such as its creep and sensitivity to bending moments, but also on temperature 
gradients, resolution and repeatability of the electrical measuring equipment and the degree to which the 
conditions of the tests are held constant, all of which are characteristics of the test procedure. The value of 
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repeatability obtained is important as it limits the accuracy to which the characteristics of the force transducer 
can be measured. 
 
In contrast to repeatability, reproducibility is defined as the closeness of the agreement between the results of 
measurements of the same force carried out under changed conditions of measurement. Note that a valid 
statement of reproducibility requires specification of the conditions changed and may include changes in the 
principle of measurement, method of measurement, observer, measuring instrument, reference standard, 
location, conditions of use and time. 
 
A force measurement system will take some time to adjust fully to a change in force applied, and creep of a force 
transducer is usually defined as the change of output with time following a step increase in force from one value 
to another. Most manufacturers specify the creep as the maximum change of output over a specified time after 
increasing the force from zero to the rated force. Figure 2 shows an example of a creep curve where the 
transducer exhibits a change in output from F1 to F2 over a period of time from t1 to t2 after a step change 
between 0 and t1. In figures this might be say 0.03 % of rated output over 30 minutes. Creep recovery is the 
change of output following a step decrease in the force applied to the force transducer, usually from the rated 
force to zero. For both creep and creep recovery, the results will depend on how long the force applied has been 
at zero or the rated value respectively before the change of force is made. 
 
The frequency response of a force transducer system is affected by the nature of the mechanical structure, both 
within the transducer and of its mounting. A force transducer on its foundation will have a natural frequency of 
oscillation and large dynamic errors occur when the frequency of the measured force approaches the natural 
frequency of oscillation of the system. In practice, a transducer’s natural frequency may be significantly lower 
than that quoted by the manufacturer, as a result of its mounting. 
 

 

Figure 2. Creep curve of a typical force transducer 

The effect of temperature changes is felt on both the zero and rated output of the force measurement system. 
The temperature coefficient of the output at zero force and the temperature coefficient of the sensitivity are 
measures of this effect for a given system. A force measurement system may need to be kept at constant 
temperature, or set up well in advance to settle in to the ambient conditions if high accuracy measurements are 
required. In some cases the temperature gradients within the measurement installation create a problem even 
when the average temperature is stable. 
 
Other influence quantities such as humidity, pressure, and electrical power changes, or disturbances such as 
radio-frequency interference, may have analogous effects to those of temperature and may be considered in a 
similar manner. 
 
In general, a force transducer has two interfaces through which a force is applied. These may be the upper and 
lower loading surfaces of a compression force transducer or the upper and lower screw threads of a tension 
device. In some load cells, one or both interfaces are part of the elastic element to which the strain gauges are 
bonded; in other transducers the interfaces may be remote from the elastic element. At each interface, there will 
be a force distribution which will depend on the end loading conditions. A change in these loading conditions, 
therefore, may cause a change in the force distribution resulting in a change of the sensitivity of the transducer, 
even though the resultant force at the interface remains unchanged. The International standard [6] concerned 
with the calibration of proving devices for the verification of materials testing machines recognises the 
importance of end loading conditions by specifying that compression proving devices must demonstrate 
insensitivity to their support, by means such as the bearing pad test. In this test, a device is loaded through a flat 
steel pad and then through each of two steel pads that are conically convex and concave respectively by 1 part in 

Creep
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Time

Output
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1 000 of the radius. Depending on the design of the transducer, the change of sensitivity caused by a change of 
end loading conditions can be quite large; some precision compression load cells with low creep, hysteresis and 
temperature coefficients can show differences of sensitivity in the bearing pad test of 0.3 %.  
 
True axial alignment of the applied force along the transducer’s principal axis, and the loading conditions 
necessary to ensure this, are major factors in the design of a reliable and accurate installation of a force 
measurement system. Force transducers used to measure a single force component are designed to be 
insensitive to the orthogonal force components and corresponding moments, provided these are within 
specified limits, but although the error due to small misalignments may be calibrated statically (see [13]), the 
alignment of force relative to the transducer axis may vary through the load cycle of a typical application giving 
potentially large and unquantifiable errors of measurement. Users of force measurement systems should adhere 
to manufacturer’s recommendations for alignment when installing force transducers.  
 
The long-term stability of the sensitivity and zero load output of force measurement systems is clearly 
important if they are to be used to compare the magnitude of forces at different times, perhaps months or years 
apart. The long-term stability will be determined by several factors including the stability of the force 
transducer’s many components, the protection of the strain gauges or other parts against humidity, and the 
conditions under which the system is stored, transported and used. 
 
A dynamic force is one which varies with time. To measure any instantaneous value requires that the frequency 
response of the force measurement system must be sufficient to be able to follow the changing force. A definition 
of frequency response is the highest sinusoidal frequency of applied force which the system can measure to a 
specified accuracy. Also if a transducer is to be used with fluctuating forces applied then its fatigue life should be 
considered. Fatigue life may be defined as the number of total full cycles of applied force which may be applied 
before the measurement uncertainty will be altered beyond specified limits. 
 
While manufacturers of force measurement systems tend to use their own set of descriptions of the 
uncertainties associated with their system, the factors contributing to uncertainty in force measurement are 
largely covered by the description above. The list is not exhaustive, but is designed to alert the potential buyer 
and user of a system that he or she must understand the way the manufacturer uses the terminology and then 
establish an uncertainty budget for his or her own application.  
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4 INTRODUCTION TO METHODS OF FORCE MEASUREMENT 
 

4.1 Overview 
 
There are many types of force transducer, and these may be used with instrumentation of varying complexity. In 
designing or specifying a force measurement system for an application, it is useful to understand the basic 
operation of the transducer to be used. This chapter describes transducer and instrumentation types starting 
with the types most widely used. A summary of the characteristics of the various devices described in this 
document is given in Table 3. The figures in the table represent typical values; transducers and systems will 
often operate outside these ranges but with increased uncertainty. 
 
 Many force transducers employ some form of elastic load-bearing element or combination of elements. 
Application of force to the elastic element causes it to deflect and this deflection is then sensed by a secondary 
transducer which converts it into an output. The output may be in the form of electrical signal as in strain gauge 
and LVDT type load cells or mechanical indications as in proving rings and spring balances. Such transducers are 
known generically as elastic devices, and form the bulk of all commonly used force transducers. There are a 
number of different elastic transducer elements but generally they consist of circular rings, cylinders or beams. 
 
The fundamental nature of elastic devices is illustrated in Figure 3. The elastic element in this case is a circular 
cylinder made of a metal such as steel. The force is applied to the end of the cylinder and the deformation is 
measured as the difference between the uncompressed and compressed length. The cylinder also expands 
outwards as it is compressed, the ratio of outward expansion to longitudinal compression being determined by 
the nature of the material (through Poisson's ratio). The force may also be applied such that the device is in 
tension, and in that case the distortion is simply reversed.  
 

 

Figure 3. Basic diagram of an elastic transducer element 

 
All elastic devices share this common basis, but the method of measuring the distortion of the elastic element 
varies considerably. The most frequent method is to make measurements of the longitudinal and lateral strain, 
and when this is undertaken by electrical resistance strain gauges such a transducer is known as a strain gauge 
load cell. Strain gauge load cells are the most common commercially available type of force transducer and are 
described in Section 4.2. Other types of elastic transducer which are less commonly used are described in 
Section 4.5. 
 
Another commonly used type of force measurement transducer is based on the piezoelectric phenomenon 
exhibited by certain crystalline materials where an electric charge is generated on the crystal surface, the 
amount of charge being proportional to the applied force. Such devices are now widely available and are 
described in Section 4.3. 
 
Many other physical relationships may be used in force measurement transducers. Pressure-based systems are 
covered in Section 4.4, while a range of other devices is described in Section 4.5. 
 

Compressed

 length

Uncompressed

 length

Applied 

force
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Table 3. Guide to force transducer types and characteristics 

 
Device type Typical range of 

rated capacities 
Typical 

uncertainty 
 
 

% of reading 

Typical temperature 
sensitivity and operating 

range 
 

% of reading per °C 

Strain gauge load cells: 
 
Semiconductor gauges 
 
Thin film gauges 
 
Foil gauges 

 
 

0.01 N to 10 kN 
 

0.1 N to 1 MN 
 

5 N to 50 MN 

 
 

0.2 to 1 
 

0.02 to 1 
 

0.02 to 1 
 

 
 

0.02 (-40 °C to +80 °C) 
 

0.02 (-40 °C to +80 °C) 
 

0.01 (-40 °C to +80 °C) 

Piezoelectric crystal 1.5 mN to 120 MN 0.3 to 1 0.02 (-190 C to +200 C) 

Hydraulic 500 N to 5 MN 0.25 to 5 0.05 (+5 °C to +40 °C) 

Pneumatic 10 N to 500 kN 0.1 to 2 0.05 (+5 °C to +40 °C) 
LVDT, capacitive, 
tuning-fork, vibrating 
wire 

10 mN to 1 MN 0.02 to 2 0.02 (-40 C to +80 C) 

Magnetostrictive 2 kN to 50 MN 0.5 to 2 0.04 (-40 C to +80 C) 
Gyroscopic**1 50 N to 250 N 0.001 0.0001 (-10 C to +40 C) 

Force balance** 0.25 N to 20 N 0.0001 0.0001 (-10 C to +40 C) 
 
 

4.2 Strain gauge load cells 
 
The most common type of force transducer, and one which is a clear example of an elastic device, is the strain 
gauge load cell. Each cell is based on an elastic element to which a number of electrical resistance strain gauges 
are bonded. The geometric shape and modulus of elasticity of the element determine the magnitude of the strain 
field produced by the action of the force. Each strain gauge responds to the local strain at its location, and the 
measurement of force is determined from a combination of these individual measurements of strain.  
 
The rated capacities of strain gauge load cells typically range from 5 N to more than 50 MN and they have 
become the most widespread of all force measurement transducers. They can be used with high resolution 
digital indicators as force transfer standards. The calibration and testing of strain gauge load cells are covered in 
detail in [13]. 
 

4.2.1 The elastic element 
 

The shape of the elastic element used in load cells depends on a number of factors including the range of force 
to be measured, dimensional limits, required performance and production costs. 
 
Figure 4 shows a selection of different elastic elements and gives their typical rated capacities. Each element is 
designed to measure the force acting along its principal axis, and not to be affected by other forces such as side 
loads. The arrows in the figure indicate the principal axis of each element. 
 

                                                                    
** Many sorts of displacement transducer may be used with the gyroscopic load cell and the force balance. The 
exact performance limits will depend on the specific type used. 
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a) compression cylinder 50 kN to 50 MN 
b) compression cylinder (hollow) 10 kN to 50 MN 
c) toroidal ring 1 kN to 5 MN 
d) ring 1 kN to 1 MN 
e) S-beam (bending or shear) 50 N to 50 kN 
f) double-ended shear beam 20 kN to 2 MN 
g) double-bending beam (simplified) 500 N to 50 kN 
h) shear beam 1 kN to 500 kN 
i) double-bending beam 5 N to 10 kN 
j) tension cylinder 50 kN to 50 MN 
 

Figure 4. Typical elastic elements and their usual rated capacities 

 
The material used for the elastic element is usually tool steel, stainless steel, aluminium or beryllium copper, the 
aim being a material which exhibits a linear relationship between the stress (force applied) and strain (output) 
with low hysteresis and low creep in the working range. There also has to be high level of repeatability between 
force cycles to ensure that the load cell is a reliable measuring device. To achieve these characteristics it is usual 
to subject the material to a special heat treatment. 
 
4.2.2 The electrical resistance strain gauge 
 
In electrical terms, all electrical resistance strain gauges may be considered as a length of conducting material, 
like a wire. When a length of wire is subjected to a tension within its elastic limit, its length increases with 
corresponding decrease in its diameter and increase of its electrical resistance. If the conducting material is 
bonded to an elastic element under strain then the change in resistance may be measured, and used to calculate 
the force from the calibration of the device. 
 
The most common materials used for the manufacture of strain gauges are copper-nickel, nickel-chromium, 
nickel-chromium-molybdenum and platinum-tungsten alloys. There are a variety of resistance strain gauges 
available for various applications, some of which are described below. Each strain gauge is designed to measure 
the strain along a clearly defined axis so that it can be properly aligned with the strain field. 
 
The foil strain gauge is the most widely used type and several examples are shown in Figure 5. It has significant 
advantages over all other types of strain gauge and is employed in the majority of precision load cells. 
 

 

Figure 5. Typical metal foil strain gauges 

 
The foil strain gauge consists of a metal foil pattern mounted on an insulating backing or carrier, constructed by 
bonding a sheet of thin rolled metal foil, 2-5 m thick, on a backing sheet of 10-30 m thick. The measuring grid 
pattern including the terminal tabs is produced by photo-etching. The production techniques used are similar to 
those used in the printed circuit manufacturing industry and lend themselves to automation and thus low unit 
cost. Typical backing materials are epoxy, polyimide and glass-reinforced epoxy phenolic resin. The backing 

a) b)

f) g) h) i) j)

c) d) e)
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provides electrical insulation between the foil and the elastic element, facilitates handling and presents a readily 
bondable surface. Sometimes the gauge is manufactured backed with an adhesive layer, reducing the amount of 
handling needed and time consumed. The epoxy or epoxy-derived backing material is difficult to handle due to 
its brittle nature, but it is preferred for use in high-precision load cells because of its superior performance 
especially in creep and low level of moisture absorption compared to polyimide type plastic. A large variety of 
foil gauges is now commercially available to the transducer designer and general user.  
 
Semiconductor strain gauges are manufactured from strips of semi-conducting silicon in either the ‘n’ or ‘p’ 
form. The output from a semiconductor gauge is very high compared to a wire or foil gauge. The gauge factor is 
a measure of the output for a given strain, and is typically 100-150 for a semiconductor and 2-4 for wire and foil. 
The output from semiconductor gauges is non-linear with strain, but they exhibit essentially no creep or 
hysteresis and have an extremely long fatigue life. High temperature sensitivity of the gauges means that careful 
matching of the gauges is required on any given load cell, and they are usually computer matched into sets on 
manufacture, but a high level of temperature compensation may still be required on the completed transducer. 
 
Thin-film strain gauges are produced by sputtering or evaporating thin films of metals or alloys either directly 
onto the elastic element or onto a small metallic substrate for subsequent attachment to the element. The 
manufacture of a thin film strain gauge system will go through several stages of evaporation and sputtering and 
may have up to eight layers of material. There are a number of thin-film strain gauge force transducers available 
which are highly cost effective when produced in large quantities due to the manufacturing techniques involved. 
This makes them ideally suited for use in large-volume products such as shop scales and pressure transducers.  
 
The wire strain gauge was the original type of resistance strain gauge, though now widely replaced by cheaper 
foil or thin film types. However the wire strain gauge is still used extensively for high temperature transducers 
and stress analysis, and is available made from a wide range of materials. The wire is typically 20-30 µm in 
diameter and may be bonded to the substrate using ceramic materials. It is less commonly used in the ‘free’ form 
where the wire is looped around insulated pins which are mounted on the elastic member. 
 
The nominal resistance of the strain gauge varies with the type and application. Wire gauges have resistances in 
the range of 60  to 350 , foil and semiconductor gauges from 120  to 5 k and thin film types around 10 k. 
Selection criteria may include size, self-heating and power requirements. 
 

4.2.3 Instrumentation used for strain gauge devices 
 

The strain gauge bonded to the elastic element is a secondary transducer converting the strain produced by the 
force applied to the element into resistance change. To maximise the response of the load cell it is normal to 
connect one or more strain gauges aligned to respond to the maximum compressive strain and another set 
aligned with the maximum tensile strain. When connected electrically in a Wheatstone bridge configuration, 
this has the added advantage of minimising the effects of environmental changes such as temperature which act 
equally on all the gauges. The resistance change is detected by measuring the differential voltage across the 
bridge (see Figure 6). 
 
A Wheatstone bridge is normally formed by four strain gauges, although it is not uncommon to use two strain 
gauges for a 'half bridge', or more than four on elastic elements of complex shape. In the latter case half the total 
number of strain gauges are subjected to compressive strains and the other half to tensile strains. The voltage 
output from the bridge when excited by an input voltage is linearly related to the resistance change of the strain 
gauges and is therefore a function of the force applied to the element. It can be shown that the output voltage is 
the mathematical product of the strain and the excitation voltage. The rated output of a load cell may be 
standardised to a nominal level, usually 2 mV/V (2 millivolts output per volt applied) but this may range from 
1 mV/V to 4 mV/V.  
 



Guide to the Measurement of Force 
 

12 

 

 

Strain 
Gauge 

Strain 
Gauge 

Strain 
Gauge 

Strain 
Gauge 

Excitation 
Voltage 

Excitation 
Voltage 

Output 

Output 

Sense 

Sense 

Shunt calibration 
resistor if fitted 

Compression 

Compression 

Tension 

Tension 

 

Figure 6. Basic arrangement of four strain gauges in a load cell 

 

A shunt resistor may be needed to perform a shunt calibration and this is often fitted in the signal conditioning 
unit to be switched across one arm of the bridge when required. Typical shunt calibration resistor values used 
for a 350  bridge are 40 k and 80 k which equate to approximately 90 % and 45 % of full load on a 2 mV/V 
transducer.  
 
A load cell is part of a measurement chain and it requires an excitation voltage to be supplied and amplification 
and conditioning of the output signal before it can be meaningfully displayed or used in a control system. 
Normally a DC system excites the load cell with a direct current (DC) voltage and amplifies the output through an 
instrumentation amplifier. This chain features wide frequency bandwidth, high stability and relatively low cost. 
 
In industrial applications, the distance between the load cell and the measuring instrument may be considerable, 
possibly hundreds of metres. The voltage drop along the connecting cable and its dependence upon temperature 
can contribute to the system error. This additional error can be remedied by the use of the six-wire connection 
technique shown in Figure 6. The voltage is sensed at the load cell and maintained at a constant pre-set level. 
 

An alternative to DC excitation is the AC system, which excites the load cell with an AC signal sine wave, square 
wave or other periodically varying input. The output is processed through an AC amplifier, a synchronous 
demodulator, filter and DC amplifier. A high-level DC signal is obtained suitable for direct analogue display or for 
conversion to a digital display with the use of an analogue-to-digital converter (ADC). Such a system has a higher 
immunity to thermal effects in the instrumentation and thermo-electric effects in the transducer, high noise 
rejection, good zero force output stability and ease of achieving isolation between the signal output and the load 
cell. However, in view of the relatively complex measuring chain, these systems tend to be costly. 
 
A strain gauge load cell has two distinct temperature coefficients (TC), one on zero load output and one on full-
scale output. The former is caused by the effect of temperature on the strain gauge resistance, the mismatch 
between the expansion coefficient of the gauge and the spring element to which it is bonded, and the out-of-
balance condition in the bridge wiring. The effect on full-scale output is caused by a combination of the 
temperature dependence of the spring element material modulus of elasticity and the temperature coefficient of 
gauge factor of the gauges. 
 

4.2.4 Housing 
 

It is usually necessary to protect the elastic element, its strain gauges and associated electronic components 
since many load cells are exposed to harsh industrial environments. The way the load cell is housed depends on 
its intended application and there are a wide range of shapes and sizes including cylinders, rectangular and 
circular beams, and tension devices like turnbuckles. The housing must allow for suitable fixings such as bolts or 
cradles and is critical in determining the correct transfer of the force to the elastic element. The housing used for 
this purpose also fulfils other functions such as limiting the side forces on the element and protecting the various 
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electrical components. Various types of load cells are shown in Figure 7 and others will be illustrated later in the 
document associated with their applications. 

 

Figure 7. A range of industrial load cells 

 
 

4.3  Piezoelectric crystal force transducers 
 
When a force is exerted on certain crystalline materials, electric charges are formed on the crystal surface in 
proportion to the change of applied force. To make use of the device, a charge amplifier is required to give a 
signal that is proportional to the applied force and big enough to measure. The first transducers to apply the 
piezoelectric effect for measurement used naturally grown quartz but today mostly artificial quartz is used. 
Because of this these devices are often known as quartz force transducers, though here more the general term 
piezoelectric crystal will be used. 
 
These piezoelectric crystal sensors are different from most other sensing techniques in that they are active 
sensing elements. No power supply is needed and the deformation to generate a signal is very small which has 
the advantage of a high frequency response of the measuring system without introducing geometric changes to 
the force measuring path.  
 
When packaged as a load washer (see Figure 8) and compressed under a force of 10 kN a typical piezoelectric 
transducer deflects only 0.001 mm. The high frequency response (up to 100 kHz) enabled by this stiffness and 
the other inherent qualities of the piezoelectric effect makes piezoelectric crystal sensors very suitable for 
dynamic measurements.  
 

Extremely fast events such as shock waves in solids, or impact printer and punch press forces can be measured 
with these devices when otherwise such measurements might not be achievable. Piezoelectric sensors operate 
with small electric charge and require high impedance cable for the electrical interface. It is important to use the 
matched cabling supplied with a transducer. 

 

Figure 8. Industrial piezoelectric load washers 
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Piezoelectric crystal sensors are primarily designed for applications using a pre-tensioned bolt which allows the 
measurement of forces in both tension and compression. Mounting of a load washer in this way is illustrated in 
Figure 9. The pre-loading is important to ensure optimum linearity and the sensor must be calibrated after 
mounting. An extension of this principle is the use of force measuring pins which are placed within the 
structure of a machine and respond to the forces within the structure. 
 
There is a small leakage of charge inherent in the charge amplifier, which causes the signal to drift. So while 
piezoelectric force transducers are ideally suited for dynamic measurements they cannot perform truly static 
measurements. Measurements can be made over a period of minutes or even hours, and piezoelectric 
transducers are said to take 'quasi-static' measurements. 

 

Figure 9. Mounting of a load washer 

 
Piezoelectric crystal sensors are suitable for measurements in laboratories as well as in industrial settings. The 
measuring range is very wide and the transducers survive high overload (typically > 100 % of full-scale output). 
The sensors' small dimensions, large measuring range, and rugged packaging make them very easy to use. They 
can operate over a wide temperature range and survive temperatures of up to 350 C. 
 
Multi-component piezoelectric force transducers measure the forces in three orthogonal axes. Figure 10 
shows the operating principle of such a transducer. 
 

 

Figure 10. Multi-component crystal force sensor 

 
Force F acts upon the transducer and is transmitted to each of three discs with the same magnitude and 
direction. Each piezoelectric crystal ring (shown ‘exploded’ in the figure) has been cut along a specific axis and 
the orientation of the sensitive axis coincides with the axis of the force component to be measured. Each then 
produces a charge proportional to the force component specific to that disc. The charge is collected via the 
electrodes inserted into the stack (see lower right drawing in the figure). 
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4.4 Measuring force through pressure 
 
4.4.1 Hydraulic load cell 
 
The hydraulic load cell is a device filled with a liquid (usually oil), which has a pre-load pressure. Application of 
the force to the loading member increases the fluid pressure, which is measured by a pressure transducer or 
displayed on a pressure gauge dial via a Bourdon tube.  
 
When used with a pressure transducer, hydraulic load cells are inherently very stiff, deflecting only about 
0.05 mm under full force conditions. Although capacities of up to 5 MN are available, most devices fall in to the 
range of 500 N to 200 kN. The pressure gauge used to monitor the force can be located several metres away 
from the device by the use of a special fluid-filled hose. In systems where more than one load cell is used a 
specially designed totaliser unit has to be employed.  

 

Figure 11. An example of a hydraulic load cell. 

Hydraulic load cells are self-contained and need no external power. They are inherently suitable for use in 
potentially explosive atmospheres and can be tension or compression devices. Uncertainties of around 0.25 % 
can be achieved with careful design and favourable application conditions. Uncertainties for total systems are 
more realistically 0.5 % - 1 %. The cells are sensitive to temperature changes and usually have facilities to adjust 
the zero output reading, the temperature coefficients are of the order of 0.02 % to 0.1 % per °C. 
 
4.4.2 Pneumatic load cell 
 
The operating principles of the pneumatic load cell are similar to those of the hydraulic load cell. The force is 
applied to one side of a piston or a diaphragm of flexible material and balanced by pneumatic pressure on the 
other side. This counteracting pressure is proportional to the force and is displayed on a pressure dial.  
 
The sensing device consists of a chamber with a close-fitting cap. The air pressure is applied to the chamber and 
builds up until it is equal to the force on the cap. Any further increase in pressure will lift up the cap allowing the 
air to bleed around the edge until pressure equilibrium is achieved. At this equilibrium position the pressure in 
the chamber is an indication of the force on the cap and can be read by the pneumatic pressure dial gauge. 
 
 

4.5 Other types of force measurement system 
 
Several other techniques, some fairly uncommon, are also used for the measurement of force – the following 
sections describe a selection of these techniques. 
 
4.5.1 Elastic devices 
 

The loading column is probably the simplest elastic device, being simply a metal cylinder subjected to a force 
along its axis. In this case the length of the cylinder is measured directly by a dial gauge or other technique, and 
an estimate of the force can be made by interpolating between the lengths measured for previously applied 
known forces. The proving ring is functionally very similar except that the element is a circular ring, and the 
deformation is usually measured across the inside diameter. These transducers have the advantage of being 
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simple and robust, but the main disadvantage is the strong effect of temperature on the output. Such methods 
find use in monitoring the forces in building foundations and other similar applications.  
 
The linear variable differential transducer (LVDT) may be used within a load cell to measure the displacement 
of an elastic element instead of using strain gauges. The LVDT is essentially a transformer which provides an 
alternating current (AC) output voltage as a function of the displacement of a separate movable magnetic core. 
The lack of friction and the low mass of the core results in high resolution and low hysteresis, making this device 
ideal for dynamic measurement applications. 
 
Capacitive load cells use a capacitance sensor to sense the displacement of an elastic element. In most cases the 
sensor consists of two parallel plates standing opposite each other. The changing length of a spring member 
produces a change in the gap between two plates, and hence a change in electrical capacitance. In the case of 
small weighing instruments such as domestic scales, the spring also provides parallel guidance of the scale's 
platform. 
 
An optical strain gauge can be formed in a manner similar to a wire strain gauge by the use of optical fibres. 
The deflection of the elastic force-bearing member with the optical strain gauge bonded to it will result in length 
changes in the optical fibres. If monochromatic light is used to feed two optical strain gauges experiencing 
different strain levels, then the phase difference between the two beams emerging from the gauges is a measure 
of the applied force. 
 
The interference-optical load cell uses a high-resolution displacement measuring method. A fork-shaped spring 
is deformed by the force, the deformation being in the region of 40 m, and the change of the aperture of the fork 
is measured by a Michelson interferometer. For the same resolution, the maximum elastic deformation and with 
it the strain of the material need not be as large as in the case of the strain gauge load cell. The deformation 
element is made of quartz (silica glass) with very small temperature dependence. Any residual error may be 
corrected by the use of a temperature sensor and computer. These systems have a limited temperature range 
from 5 °C to 40 °C for an overall performance better than 0.01%, and the hysteresis and creep are both 
particularly small. Optical systems based on Moiré fringe measurements are also manufactured. 
 

4.5.2 Vibrating elements 
 

In the case of the tuning-fork load cell, the force transducer consists of two parallel band splines, which are 
connected at their ends and vibrate in opposite directions in resonance. The mode of vibration is like that of a 
tuning fork and the resonant frequency changes if the element is subjected to a tensile or compression force. The 
excitation of the vibration and the reciprocal reception of the vibration signals are carried out by two 
piezoelectric (see Section 4.3) elements close to the vibration node of the tuning fork. The tuning-fork load cell is 
typically highly linear and has a low force capacity – this can be increased by attachment to a larger elastic 
element. 
 
The vibrating-wire transducer consists of a taut ferromagnetic wire that is excited into transverse vibrations 
by a drive coil. These vibrations are detected using a pick-up coil. Both coils have permanent magnet cores and 
once the wire has been excited to its resonant frequency for a given tension, it is maintained at this frequency by 
connecting the two coils through an amplifier to form a self-oscillating system. Each resonant frequency is a 
measure of the wire’s tension and hence, applied force at that instant. The advantage of the vibrating wire 
transducer is its direct frequency output which can be handled by digital circuitry eliminating the need for an 
analogue-to-digital converter, giving a high resolution output. The vibrating wire principle is used to measure 
force in pressure transducers and strain levels in civil engineering applications, due to its inherent long-term 
zero stability. 
 
In the surface-wave resonator load cell, an ultrasonic transmitter, which is actuated by alternating voltage and 
consists of comb-shaped electrodes on a quartz substrate, emits surface sound waves directed according to the 
inverse piezoelectric effect. A second system, which is arranged in the same way, converts these sound waves 
back into an alternating voltage, according to the piezoelectric effect. The amplifier is arranged to ensure that the 
system vibrates at its natural frequency. The deformation of a spring, which depends on force, changes the 
resonator frequency. 
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4.5.3 Magneto-elastic devices 
 

The magneto-elastic force transducer is based on two electromagnetic coils arranged at right angles to each 
other and fitted to the transducer body. One coil (the primary) is supplied with an alternating current; the other 
(the secondary) acts as a measurement coil. Since the two are at right angles to each other, there is no magnetic 
coupling between the coils as long as there is no load on the transducer body. If the transducer body is loaded, 
the field pattern changes. The permeability of the steel is reduced in the direction of the force and increases 
perpendicular to it, resulting in a change in the symmetry of the magnetic flux, so that some of the flux induces a 
voltage in the secondary winding; this induced voltage is proportional to the applied force. Due to the sturdy 
construction, high signal level, and small internal resistance, the magneto-elastic load cell can be used in rough 
and electrically disturbed environments such as in rolling mills. The rated capacities of these devices lie in the 
range from 2 kN to 5 MN. 
 

4.5.4 Dynamic balance devices 
 

Gyroscopic load cells exploit the force sensitive property of a gyroscope mounted in a gimbal or frame system. A 
commercially available gyroscopic load cell incorporates a dynamically balanced heavy rotor on a spindle, itself 
mounted in the inner frame of a two-gimbal system. The arrangement has three axes of rotational freedom 
mutually at right angles and has the axis of origin on the centre of gravity of the rotor. The force to be measured 
by the transducer is applied through the lower swivel and a couple is produced on the inner frame causing the 
gimbals to precess. The time taken for the outer gimbal to complete one revolution is then a measure of the 
applied force. The gyroscopic load cell is essentially a fast responding digital transducer and is inherently free of 
hysteresis and drift, making them suitable for long-term applications. 
 
The force balance uses a feedback circuit to compare the electrical output to the force input. A typical system 
has attached to the force input member an electrical coil which operates in the flux gap of a permanent magnet. 
An electric current passed through the coil generates a restoring force in opposition to the applied force. A 
displacement transducer is used to sense the displacement of the force input member, its output being amplified 
and used to control the current in the coil until the restoring force exactly balances the applied force and 
restores the force input member to its original position. The coil current to achieve this balance is proportional 
to the applied force and is measured as a voltage sensed across a resistor in series with the coil. This type of 
device has good dynamic performance, small deflection and relative insensitivity to environmental conditions. 
They are inherently stable and accurate and as a result are often considered for use as secondary standards at 
lower force levels. This type of device has generally replaced mechanical analytical balances in mass 
determination. 
 

4.5.5 Plastic deformation 
 

Plastic deformation may be used as a method of permanently recording an applied force. The force is applied to 
a small (usually metal) element, which suffers permanent deformation beyond the elastic limit of the material. 
The deformation for a particular size, shape and material properties may be calibrated by testing of similar 
elements. 
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5 APPLICATIONS 
 

5.1 Range of applications 
 
Force measurement systems are widely used in different industries. It is difficult to describe every possible use, 
so the applications listed here are designed to give a representative view of the types of application that users of 
force measurement systems may encounter. Rather than grouping the applications by industry it is probably 
simpler to group them by where in the production cycle they occur: in research and development, during the 
manufacturing process, or during the installation, testing and use of a product.  
 
Frequently force measurement is part of the safety system of the associated process and may be part of the 
quality control of the base, intermediate or end product. The measurement may be destructive, such as a 
materials testing machine checking material stress/strain characteristics, or non-destructive such as checking 
machine or product performance. 
 
In every case the particular application or industry will require specialist knowledge in designing and using 
force measurement systems. It is important to consult the right people (product specialists, manufacturers etc.) 
before embarking on an unfamiliar application. Guidelines for the choice, installation, calibration and use of 
force measurement systems for any sort of application are given in Sections 6 and 7. 
 

5.2 During development of a product 
 
5.2.1 Materials testing machines 
 
Force transducer systems are commonly fitted to materials testing machines to monitor the load whilst testing 
specimens of material to ascertain their stress/strain or fatigue characteristics. These machines usually work 
along a single axis and may apply tension or compression forces or both. Some machines are specially designed 
to apply loads in 2 or even 3 axes simultaneously. Because they are well-controlled and widely used machines 
for the application of force, materials testing machines are also frequently used in the general calibration of force 
measuring systems, see Section 7.2 for more details. 
 
5.2.2 Component testing  
 
Component testing is important in many industries, particularly the aerospace and automotive industry. The 
components, larger parts of the structure and sometimes the complete structures are tested under simulated in-
service conditions. Measurements may be made of the applied forces and the forces within the structure, and 
this may involve the use of standard load cells, or may need specific fitting of strain gauges or force-measuring 
pins directly onto the structure being tested. 
 
5.2.3 Gas turbine thrust measurement  
 
Measurement of gas turbine thrust is one of the three main parameters needed to define the power output and 
efficiency of aero-engines, the other two parameters being rotational speed and fuel consumption. The levels of 
uncertainty required are very low, and this application is one of the most demanding on force measurement. The 
engine is mounted horizontally in a specially designed cradle that is either supported directly with shear beam 
force transducers or is supported on low friction flexures with force transducers mounted horizontally to 
measure forward (and sometimes reverse) thrust generated by the engine in the frame. 
 
5.2.4 Torque measurement on engines, pumps and gearboxes 
 
To measure the efficiency and torque output of a motor it is common to drive it into a rotational absorption 
device such as a water brake, or into an electric generator. The absorption device is mounted between trunnion 
bearings so that it is free to rotate around the input drive shaft. A mechanical arm is then attached to the body of 
the motor/brake to restrain the rotation via a force transducer attached to its other end. The force transducer 
measures the force at a known distance on the end of the arm and thus the torque output of the engine can be 
calculated. In the case of pumps and gearboxes an AC or DC motor is used in the drive (rather than absorption) 
mode to measure the torque necessary to drive the pump or gearbox and thus its losses and efficiency can be 
ascertained. 
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5.3 During the manufacturing process 
 
5.3.1 Cable laying 
 
Large amounts of cable are laid around the world, either sub-sea or in trenches into the ground. Such cables may 
be copper or fibre-optic, and the force applied to them needs to be monitored and controlled for the efficiency of 
the operation and to assure the cable is not over-stretched. Cable laying winches normally take the cable from a 
drum, and a linear engine handles the cable by gripping it between opposing pairs of wheels. The cable usually 
enters and leaves in or near the horizontal axis. 
 
To measure the tension force, which is the reaction between the machine and the mounting deck, the winch or 
linear engine handling the cable is supported directly on shear pin force transducers (see Figure 12) with their 
measuring axes horizontal. If on board ship, compensation for the pitching of the ship must be made to correct 
for the fluctuating forces acting on the machine. 

 

 

Figure 12. A shear pin force transducer 

 
 
5.3.2 Undersea pipe-laying 
 
Measuring pipe-laying tension is a similar application to cable laying with a linear engine, again on board ship, 
but the pipe is handled by opposing pairs of caterpillar tracks. The frame of the apparatus is supported on shear 
pin force transducers to measure the tension force in the pipe. In this case there is the added complication that 
the linear engine may be mounted on a tilting frame or tower so that the pipe can enter the sea at the stern of the 
vessel at any predetermined angle between horizontal and vertical.  
 
5.3.3 Web tension measurement 
 
In the paper, plastic film, laminates and metals industries force transducers are mounted under the bearings of 
one of the rollers in the web path to measure the force generated by the web, and thus display the web tension. 
Alternatively some designs of force transducer allow support of the axles of the roll directly and can be rotated 
to be in line with the maximum component of force generated by the tension (see the worked example in Section 
9.1). 
 
5.3.4 Rolling mill forces in the metals industry 
 
Measuring the forces acting on rollers during metal rolling is important for both the product quality and safety 
of the operation. The system design is similar to that described for web tension measurement, but the force 
transducers under the bearings measure the separating forces between opposing rolls. Another method is to 
mount an extensometer on the frame of the machine, thus using the frame in the same way as the elastic element 
in a transducer. The environmental demands on the transducer in terms of temperature, vibration, and dust may 
be very severe. 
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5.3.5 Sheet metal pressing 
 
When pressing sheet metal and other materials, force transducers may be fitted in to the press so that the 
optimum forces applied to the component being manufactured can be measured and controlled. See the worked 
example in Section 9.2. 
 
5.3.6 Cutting tool forces 
 
Certain high-speed fine machining operations require knowledge of the forces acting on the cutter in order to 
maintain optimal performance. A four-component dynamometer may be fitted onto the rotating tool spindle to 
measure cutting force and torque. Strain gauge systems have been used in this application, and a quartz device 
is commercially available. A large range of frequency response and high stiffness of the transducer are key 
factors in determining the usefulness of a transducer in such an application. 
 
5.3.7 Measuring drilling forces in the oil industry 
 
Oil and gas wells are drilled by mounting a cutting bit on a long piece of pipe that is weighted at the end and 
suspended from a mast or derrick. The total force must not exceed the load capability of the mast, nor exceed the 
tension strength of the pipe when pulling out of hole against possible sticking forces in the hole. The drilling 
force applied to the bit is the total weight of drill string in the hole less the hook load, and this is critical in 
maintaining optimum drilling efficiency. Force measurement in operation is therefore vital in many respects. 
The measurement is accomplished by either mounting a force transducer in the anchor point of the multi-drop 
ropes that support the main drill string support hook, or more accurately, by mounting force transducers under 
the complete crown block assembly at the top of the drilling derrick. 
 

5.4 Systems that measure or control force for safe operation   
 
5.4.1 Ship and tanker mooring forces 
 
Mooring forces of ships frequently need to be monitored. Tension force transducers can be mounted in line with 
the mooring ropes, or more commonly shear-pin force transducers may be built in to the clevis block mountings. 
 
5.4.2 Tension leg platforms 
 
Tension leg platforms are floating offshore structures, usually for petroleum drilling or production, which are 
moored to the seabed via flexible legs. The legs have multiple combinations of high capacity force transducers in 
parallel so that the tension in each leg is monitored and can be controlled and equalised by appropriate 
ballasting. 
 
5.4.3 Crane overload/underload protection 
 
To monitor the forces acting on a crane hook, the anchor point for the hook support cable or a compensating 
sheave or pulley on the crane may have load cells built in to them. Depending on the arrangement, the 
transducers may act in tension or compression. There is usually a warning given if an attempt is made to lift a 
load in excess of the rated capacity of the crane (or a snagged load). There is often also a requirement for low 
load warnings (called “slack rope”) to stop the grab or bucket being lowered so that it touches the ground and 
then tips over tangling the support ropes. On mobile cranes the load being lifted is taken along with jib angle, jib 
length and other mechanical characteristics to compute turning moments and activate an alarm before the crane 
becomes unstable and tips over. 
 
5.4.4 Road traffic axle loads 
 
The measurement on-board a vehicle of the force acting on each of the axles (known as axle load) is important 
for safety of the vehicle and to minimise damage to the highway infrastructure. Such systems are not for the 
determination of mass, although they are for the measurement of force due to gravity. 
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5.5 Process weighing 
 
5.5.1 Force measurement in weighing 
 
Determining the mass or weight of a product is often a key step in a manufacturing process, and is known as 
process weighing. Batch mixing, lorry loading, packing and vessel filling of liquids, gases or solids are all 
processes requiring accurate determination of weight. The user is referred to [22] for a comprehensive guide to 
laboratory-based mass determination, but many process weighing situations use load cells to measure forces 
from which the weight of product is derived; see [25] for further information. 
 
Good practice in using force measurement for weighing is similar to other force measurements, and the user 
may apply the guidelines given in the present document. One pitfall however is that while determination of the 
force may be straightforward, the interpretation of the gravitational component acting on the mass may not be 
so simple, as shown by the following example of vessel weighing. 
 
5.5.2 Vessel weighing  
 
If a vessel can be mounted at all support points on force transducers, and if the associated pipework and fittings 
do not take some of the force, then the weight may be derived from the total force measured.  
 
Figure 13, for example, shows a tank supported on four load cells. Often, however, to reduce cost the vessel may 
be mounted on one load cell and two dummies, or two load cells and two dummies, and the force is assumed to 
be equally distributed between the active and non-active points.  

 

 

Figure 13. Vessel supported by four load cells 

 
 
Weighing of a 3-legged tank/vessel with one active force transducer in this way leaves the measurement at the 
mercy of variations in centre of gravity due to non-level loads, non-uniform vessel cross-section, agitation of the 
contents and external wind forces. Accuracy of weighing with these systems is usually poor (although acceptable 
sometimes for level measurement) even if the material in the tank is a liquid or other self-levelling product. The 
effects of pipework, fittings and non-linear deformation of the tank will cause movement of the centre of gravity 
between the empty and full conditions as well as affecting the total force seen by the measurement devices. 
 

5.6 Requirements on uncertainty 
 
Requirements of measurement uncertainty vary with the application and even within the industry for the same 
application. The need for lowest uncertainty is in the area of force transfer standards where uncertainties no 
greater than 0.005 % full scale output (fso) and repeatability of 0.001 % fso or better are required. One of the 
most stringent requirements in this area is the inter-comparison of deadweight machines and also calibration of 
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mass weights. Much higher uncertainties are generally found in overload protection systems such as crane 
overload protection, winch mooring, and weighing without fully supporting the vessel, where 5 % fso - 10 % fso 
is frequently acceptable. Normally the uncertainty in most of the other applications will be from 0.1 % fso to 2 % 
fso. 
 
 

6 CHOICE, DESIGN AND OPERATION OF SYSTEM 
 

6.1 Choice of force measurement system 
 
It can be seen from the previous section that there is a wide range of applications for force measurement in 
many different industries. The choice of force measurement system can only be made after considering the 
specific details of the application. The designer should consider the range of force to be measured, the number of 
loading points, the direction of the forces (and whether in tension, compression or both), the duration and rate 
at which the force is applied to the transducer, and the environmental conditions. As a result of these 
considerations, the choice can be made on what type of transducers can be used, how many will be required and 
of what capacity, whether uni- or bi-directional, and whether single or multi-axis.  
 
The choice of instrumentation also needs to be made. The frequency and amount of data to be collected need to 
be considered as well as the nature of the indicator and any links to a data acquisition or control system. 
 
The design of the force measurement system must meet the required limits of uncertainty, considering the 
uncertainties from each system and calibration component. Although a particular installation may require 
several transducers, the text here will refer to transducer in the singular – the implication is that in an 
installation with more than one device, the considerations will apply to all of them. 
 
6.1.1 Transducer operating capacity 
 
Normally the transducer should be chosen such that it can be operated within its design loading range. Careful 
consideration should be given to potential overload events that may occur since overloading the transducer 
could, at the very least, compromise the transducer’s calibration, especially under dynamic loading. 
 
6.1.2 Single or multiple transducers 
 
The decision on the number of transducers to be used can be influenced by several factors. These factors include 
consideration of the space available, total capacity requirement and the capacities of load cells available, number 
of loading points, accuracy requirements and cost restraints. Placing transducers at all points of loading will 
reduce the uncertainty compared to using pivots or dummy load cells at some of the loading points and will 
minimise the effects of off-centre loading and bending forces (see the discussion on process weighing in Section 
5.5 for example). Using several transducers may be necessary to get the capacity required, or may be beneficial 
to minimise the range of different devices to be supported but using multiple transducers may incur extra costs 
due to additional hardware and calibration. 
 
6.1.3 Uni-directional or bi-directional transducer 
 
The choice of using a uni-directional or bi-directional force transducer is required when both tension and 
compression forces are to be measured on the same rig or machine. The obvious choice of a bi-directional 
transducer has the advantage that fewer transducers are required and mounting is simple. However, a 
disadvantage is that measurement uncertainty may increase as the zero force point is approached. Note that 
transition across zero will introduce additional uncertainty. In certain situations requiring low uncertainty, the 
use of two uni-directional transducers pre-loaded against each other may be considered but the design of such a 
system is complex. When bi-directional forces are to be measured, it is important that the system is stiff, and that 
the zero force point is well-defined mechanically, with low backlash. 
 
Many applications for force measurement involve the fitting of a transducer in a tension/compression strut, 
which naturally lends itself to the fitting of a single in-line transducer within the length of the strut or possibly a 
pin/clevis type at one end. Some measuring pins, shear beams, and pre-loaded force washers are particularly 
suited for bi-directional force measurement. 
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6.1.4 Static or dynamic measurement 
 
The force measurement system must be capable of measuring the rates of change of force that are of interest and 
any transducer used should have a natural frequency of response which is well above the maximum frequency 
expected in the application. As described in the description of the different sorts of transducer, some 
transducers (such as piezoelectric crystal) are inherently better for high frequency measurements. For long-
term stability in static measurements foil strain gauge, gyroscopic, and vibrating wire transducers are 
particularly stable. 
 
6.1.5 Multi-component force measurement 
 
Where several components of force are to be measured, the system may comprise of uniaxial transducers 
aligned to each required axis, or use a multi-component transducer. Multi-component force transducers have a 
variety of forms from bi-axial through tri-axial to 6-component ‘sting’ balances that can measure on three axes 
and also bending moments about each axis. A multi-component piezoelectric crystal force sensor was described 
in Section 4.3. 
 
Depending on the measuring range and force footprint, it may be possible to use a single multi-component force 
sensor to solve a certain measurement problem. When larger sizes and/or ranges are necessary, a so-called 
force dynamometer might be required consisting of a mechanical packaging of usually four multi-component 
force elements and specific wiring of the force signals. See Section 9.4 for an example of the use of a type of force 
dynamometer.  
 
6.1.6 Instrumentation and data collection 
 
As discussed in Section 4, the instrumentation associated with a force transducer may range from the very 
simple to the extremely complex. Each type of transducer has particular types of instrumentation associated 
with it and some examples are given in Table 4. The instrumentation may contain a number of separate elements 
and some possible combinations are shown in Figure 14. 
 
There is normally an indicator on the instrument, which may give the value of the measurement in units of force 
(in which case there will be an internally-set calibration applied) or in non-force units such as mV or mV/V. Also 
the instrument may be required to communicate the output directly to a data acquisition system or control 
system. Such output may be analogue or digital. 
 

 

Figure 14. Typical instrumentation combinations 
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Analogue output is commonly 0 V to 5 V in laboratory instrumentation systems and 4 mA to 20 mA for 
industrial use. Digital output is normally via standard electronic communication systems such as serial 
interfaces or fieldbuses, where the standard specifies the type of connectors, the signals available, and their 
location on the connectors. The use of standard buses enables different instruments to be easily added to a 
network. 
 
Data collection in a force measurement system is of particular importance in the measurement of rapidly 
changing forces. The design must accommodate the technical requirements addressing the speed, period and 
volume of data. The susceptibility of the system to developing undetected errors between calibrations should be 
considered. This can be alleviated by building in redundancy, typically by using two similar force measurement 
transducers to cross reference their measurement. Monitoring multiple channels can introduce reading 
uncertainties due to slew (the situation where all the channels cannot be read at the same time and the force has 
changed slightly between readings of the different channels). Slew can be eliminated by using sample and hold 
techniques. 
 

Table 4. Instrumentation associated with common transducer types 

Transducer type Output Typical instrumentation 
Loading column, proving 
ring 

Deflection (length) Dial gauge 

Strain gauge load cell Voltage Voltmeter. Often combined 
with the transducer power 
supply and output digital 
indicator. 

Piezoelectric Charge Charge amplifier 
Hydraulic, pneumatic load 
cell 

Pressure Pressure gauge, traditionally 
Bourdon tube, or transducer 

 
 

6.2 Design considerations 
 
6.2.1 Safety  
 
The design of a force measurement system must include the necessary safety requirements. This guide cannot 
be specific for a given installation and the user must be fully responsible for all safety requirements of any 
particular application. The statements in this document are designed to act as an aide-memoire for the user, who 
should also consult the norms and standards for his or her specific industry and installation. The design of an 
installation should address the potential hazards produced by the use, containment and transportation of energy 
in its many forms. Consideration should be given to these hazards within the force measurement system and its 
associated apparatus, in conjunction with the compatibility and needs of the surrounding areas and processes. 
Potential safety hazards may include electrical, mechanical, hydraulic, heat, radio frequency, chemical, or light 
energy sources. 
 
When a force measurement system is to operate in a potentially explosive atmosphere appropriate design rules 
must be used and an intrinsically safe operating system should be considered. Information on this specialist 
subject can be found in [30]. 
 
In the case of fluctuating forces, the natural frequency of the load cell and its mounting should be much greater 
than the frequency imposed in order to avoid the system going into resonance and failing catastrophically. 
 
6.2.2 Environment 
 
The environment in which the force measurement system has to work can have a significant effect on its 
performance. Parameters to be considered include the temperature, vibration, humidity, corrosive nature of the 
atmosphere, variation in ambient pressure and freedom of movement required by the displacement of all the 
force measurement transducers.  
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The protection of a force transducer against penetration by foreign objects (including hands and tools, dust etc.) 
and ingress by moisture is normally given by an IP code. So, for example, a force transducer coded IP56 is dust 
protected (first numeral 5) and protected against powerful water jets (second numeral 6). A device coded IP10, 
though, is protected against the ingress of a solid foreign object of greater than 12.5 mm diameter or a finger of 
12 mm diameter (first numeral 1) but not protected at all against water ingress (second numeral 0). The user is 
referred to BS EN 60529 [17] or manufacturer’s literature, for more details on environmental protection levels. 
In some cases, it may be necessary to consider protection of the transducer against impact; see BS EN 62262 
[18]. 
 
Temperature becomes an issue when the temperature limits of the force measurement system and its 
transducers are approached or exceeded. In this case measurement of the transducer’s temperature and its 
environment must be made. Both the actual temperature and rate of change should be measured. The latter is 
important as temperature gradients may occur which could significantly affect the accuracy of the force 
measurement reading. To monitor temperature gradients a multiple sensor temperature measurement system 
should be employed.  
 
Vibration induced in the force measurement system should be considered. The design should ensure that 
vibration is maintained within the specified operating limits. The effects of humidity and corrosive atmosphere 
on the force measurement system can be addressed using standard industrial techniques.  
 
6.2.3 Installation space 
 
The design must allow space for installation, calibration and maintenance of the force measurement system and 
any auxiliary components such as the transfer standard, temperature regulation equipment, telemetry data or 
control links. The design may also need to allow for position feedback transducers for monitoring or control 
purposes, specific lifting or manoeuvring equipment, space lighting or safety equipment including possible 
interlocks and isolation systems. 
 
6.2.4 Force transducer mounting  
 
The location and alignment of the force transducer and mounting parts within the application need to be 
assessed. This is to ensure that during normal operation unnecessary side forces and twisting moments cannot 
be introduced and that the optimum loading position is used. 
 
Freedom of movement is essential over the operating range of applied force; this should be in both directions if 
bi-directional forces are to be measured. The design should also ensure that there are no parallel load paths 
(known as force shunts) which may take some of the force that is supposed to be measured by the transducer. 
Force shunts can be present all the time (such as through pipework connections) or may occur when the 
movement of the system is arrested by overload stops. 
 
The end fittings of the transducer should be designed to minimise side loads and bending moments, and allow 
the force to be passed to the transducer along a well-defined axis, normally the principal axis of the transducer. 
The interface at which the transducer is removed from its mounting on the rig for calibration purposes should if 
possible not involve any removal or adjustment of any threaded fitting on the force transducer itself. 
 

6.3 Operating the force measurement system 
 
The way the force measurement system is operated can have a significant effect on the uncertainty achieved. 
Care needs to be taken that the instrumentation and power supplies are allowed time to warm up before use 
(usually some tens of minutes), and that the temperature of the transducer and installation is stable. Sometimes 
thermal gradients can introduce extra uncertainty even when the process is in steady state. 
 
It is good practice to monitor the output at zero force as a regular check. This check is particularly good at 
determining when the transducer may have been overloaded and its characteristics possibly affected. It is 
important to ensure that zero force is truly zero and repeatable. If zero force is not suitable, then some other 
mechanically well-defined check force may be used. 
 
Care should be taken in connecting and installing cables so that electromagnetic and thermally-induced effects 
are avoided. 
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A shunt calibration may be performed on strain gauge load cells to check the installation by switching a resistor 
across one arm of the Wheatstone bridge (this was shown in Figure 6). This puts a known offset onto the bridge 
output to simulate a load that has been determined at the time of calibration of the transducer by the 
manufacturer. Individual values are needed for each transducer, and some manufacturers will only supply these 
to special order. A shunt calibration is a useful check on the performance of the electrical part of the system, but 
is not a substitute for a force calibration. Special attention should be made to connections and cables for the 
shunt calibration, otherwise significant errors may occur. If the cable is cut or extended then a correction factor 
should be applied according to the supplier’s instructions. The best uncertainty that can be expected from a 
shunt calibration is 0.2 %, but this cannot be assumed unless the system has been very carefully evaluated. 
 
The data may still suffer corruption even after acquisition, and care should be taken to ensure that the raw un-
processed data is stored in addition to values which have been mathematically manipulated, to enable 
subsequent checking if required. 
 
In high accuracy applications it may be necessary to check the correct operation of the force measurement 
system before and after critical events. Where possible these checks should identify the magnitude of error from 
each source. Typically these take the form of drift and noise in the conditioning system, non-linearity and 
hysteresis in both the conditioning equipment and force transducer and creep from the force measurement 
transducer. The checks should also identify the errors produced by the system’s mountings which can take the 
form of stiction, limitation of free movement, and other unwanted loading effects. Such confidence checks should 
be a part of the regular maintenance programme. Continuous checks should also include evidence that the force 
transducer and its environment have been maintained within the required limits. 
 

6.4 General DOs and DON’Ts 
 
6.4.1 DOs 
 
Do make sure you understand the definitions of the specifications that are used by the manufacturers of the 
force measurement system you intend to use. 
 
Do make sure that the rated capacity of the force transducer is equal to or greater than the applied forces, but 
not overly so, as over-specifying the capacity will lead to loss of usable signal and the increase of thermal errors. 
 
Do consider the whole measuring range needed. What are the largest and smallest forces you expect to measure? 
If you do not know, a transducer with large measuring range and high overload is of benefit. 
 
Do consider inclined forces and the resultant side forces present in the application and the capability of the 
force transducer to withstand them and measure to the required uncertainty in their presence. It does not mean 
that if a device has a specification that says it will withstand 100% side force that this side force will not affect, to 
some degree, the measurement of the force acting along the principal axis. 
 
Do consider the effect of dynamic forces in the application. The rating of the transducer must encompass these 
forces within its normal working range or some means of protecting the load cell must be designed in. A 
dynamic overload beyond the safe overload of the load cell will damage it just as surely as a static one. 
 
Do consider the working environment that the transducer will be subject to, consider temperature, humidity, 
water splash and potential mechanical abuse. 
 
Do consider if any of the force to be measured is taken by force shunts such as supports, bearings, flexures, pipes 
etc. causing errors which may be impossible to quantify. 
 
Do consider the mounting of the sensor. The quality of the measurement signal depends on the correct mounting 
of the sensor in the machine structure. Does the mounting minimise the impact on the machine construction? 
 
Do consider how easy it is to maintain, calibrate, and test the mounted sensor. 
 
Do remember to include purchase price, lifetime, and installation and calibration costs of transducers, 
amplifiers, and the whole measuring chain when comparing costs. 
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Do choose an appropriate data acquisition rate. Filtering and signal conditioning (e.g. amplifier settings, 
low/high pass filters, software) need to be set correctly.  
 
Do, if you use a piezoelectric force sensor, reset the amplifier either manually or triggered through switches 
before each measurement to give repeatable measurements. 
 
6.4.2 DON’Ts 
 
Don’t design or use a load cell where the applied forces (static or dynamic) normally encroach into the safe 
overload capacity of the transducer. 
 
Don’t lay connection cables alongside magnets or cables carrying either power or large switching currents. 
 
Don’t lay cables where they can be damaged by fork-lift trucks or other vehicles operating in the vicinity. 
 
Don’t change the cable length if a transducer is supplied with one fitted – such changes may affect the system 
characteristics. 
 
Don’t allow ingress of moisture or contamination to the connections either at the transducer, junction boxes or 
instrument. 
 
Don’t pick up a transducer by its cable, if it has one.  
 
Don’t design an installation with multiple force paths unless they are all measured or the position of force 
application is well controlled. 
 

6.5 Working with the supplier 
 
It is always advisable, if possible, to consult the supplier of the force transducer about the proposed force 
measurement application. The supplier will be able to advise on selection of the most appropriate transducer for 
the circumstances and will often be able to provide additional application information to that which appears in a 
standard data or specification sheet. In particular, the supplier will be able to advise on the way the force is 
applied to the transducer and a mounting arrangement which will ensure that the best measurement 
uncertainty is achieved. 
 
The transducer manufacturer will also advise on other aspects referred to earlier in this chapter, such as 
overload behaviour, environmental protection and, if appropriate, dynamic considerations such as shock load 
behaviour, deflection, response and fatigue life. 
 
The manufacturer may be prepared to customise the mechanical or electrical specification of a standard 
transducer if this is necessary to satisfy the application requirements and may be able to offer calibration 
certification or a re-calibration service. 
 
Before discussing any requirements with a manufacturer it will be helpful to run through the application to 
understand the requirements.  
 
Table 5 summarises features which may be required in many force measurement applications, and which should 
be considered for any new installation. 
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Table 5. Checklist of potential requirements for a force measurement system 

  
Force Applied 
  Maximum force 
  Working force range 
  Zero offset 
  Overload requirement 
  Static/dynamic load 
  Uncertainty required 
  Side load  
  Inclined load 
  Bi-directional load 
  Multi-axis load 
  Fatigue rating 
  Vibration levels 
 
Mechanical 
  Deflection 
  Load cell orientation 
  Change of orientation 
  Equal load sharing 
  No. of loading points 
  Flexures/restraints 
  Direct loading 
  Pivots 
  Dirt build up 

Calibration  
  Load cell 
  System 
  Direct/indirect 
  Deadweight 
  Transfer standard 
  Shunt 
 
Environment 
  Wet/humid 
  Immersion 
  Dust 
  Specific sealing required 
  Corrosive 
  Hazardous 
  Temperature range 
  Hygienic 
 
Instrumentation 
  Analogue/digital 
  Resolution 
  Local/remote display 
  Repeat display 
 

  Supply - mains AC 
 - low V DC 
 - battery 
  Trip points 
  Housing 
  Outputs 
  Voltage sensing 
  Cable length 
  Electrical noise 
  Hazardous area 
  Filtering 
 
System Configuration 
  Multiple outputs for 
redundancy 
  Load share adjustment  
 - mechanical 
 - electrical 
  Instrumentation 
  Junction box  
  Load cell connection 
 -  cable 
 -  connector 
  Standards for 
verification/compliance 
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7 CALIBRATION 
 

7.1 Overview 
 
The previous chapters have covered the choice, operation, and design of force measurement systems and their 
installation. But even with appropriate transducers and system design, the measurement cannot be relied upon 
without some check on the performance of the system. Unexpected installation effects, degradation of the 
equipment over time, or user abuse may all lead to a measurement which has a greater uncertainty than the 
designer planned. Consequently, initial and subsequent calibrations are required to ensure that the force 
measurement meets the needs of the user and achieves the required degree of uncertainty. 
 
The calibration of a force measurement system requires an understanding of traceability, standards, 
methodology, procedures, and analysis of the data. This chapter covers those subjects in that order. 
 

7.2 Standards and traceability 
 
Traceability to authoritative standards is the best way to ensure accuracy of measurements, and leads to 
consistency of measurements among users at different times and locations. A traceable measurement is one that 
can be related to a primary measurement standard through an unbroken chain of calibrations. 
 
Primary standards are usually defined at a national or international level by a single authoritative measuring 
instrument known as a national standard or international standard. Traceability normally means that the 
calibrations have been undertaken by the national standards laboratory (e.g. NPL in the UK), by an accredited 
laboratory (e.g. one accredited by UKAS), or by a national or accredited laboratory in another country with which 
there is a reciprocal recognition agreement. 
 
A standard force is less easy to visualise than a standard mass and by its nature must be created by a machine 
rather than having a separate existence as an artefact. Not only must the magnitude of the force be known to the 
required uncertainty, but also its direction and the conditions of its application to the transducer under test.  
 
Machines capable of undertaking force calibrations are known as force standard machines and they may be 
categorised as either primary or secondary. Primary standard machines in force measurement are those whose 
uncertainty can be verified through physical principles directly to the fundamental base units of mass, length, 
and time. Secondary standard machines are ones that can reliably reproduce forces and be compared to 
primary standards by the use of a force transfer standard, which is a calibrated force transducer, frequently a 
strain gauge load cell. Types of force standard machines and their characteristics are given in  
Table 6. The instrumentation used during the calibration must itself have full traceability, either by calibrating 
the complete force measuring system of transducer and instrumentation together, or separately for the 
calibration instrumentation. 
 
Most documentary standards in the area of force measurement were written to satisfy a need for traceability in 
materials testing. The procedures contained in these standards are also used for the calibration of force 
measurement systems in a wide range of other industries, although BS 8422 [13] has also been developed to 
meet the force traceability requirements in these other areas. The calibration, or verification, of materials 
testing machines for uniaxial testing is covered in the UK by BS EN ISO 7500-1 [11] for machines operating in 
both tension and compression. The document dealing with the calibration and classification of transfer 
standards (or force-proving instruments) is BS EN ISO 376 [6]. In the case of transfer standards, any particular 
calibration may result in an interpolation classification for which equations linking force to deflection (valid 
within the range of calibration forces) are calculated and stated in the certificate, or a specific forces 
classification, which only enables the instrument to be subsequently used at the calibration forces. 
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Table 6. Types of force standard machine 

Machine Type Principle of operation Uncertainty*  Category 

Deadweight 
machines  

A known mass is suspended in the 
Earth’s gravitational field and 
generates a force on the support 

0.001 % Primary or 
Secondary 

Hydraulic 
amplification 
machines  

A small deadweight machine 
applies a force to a piston-cylinder 
assembly and the pressure thus 
generated is applied to a larger 
piston-cylinder assembly 

0.02 % Secondary 

Lever amplification 
machines  

A small deadweight machine with a 
set of levers which amplify the 
force 

0.02 % Secondary 

Reference force 
transducer machines 

One or more force transfer 
standards are placed in series with 
the instrument to be calibrated 
(typically in a materials testing 
machine) 

0.02 % Secondary 

Strain gauged 
hydraulic machines  

The force applied to an instrument 
is reacted against by strain gauged 
columns in the machine's 
framework 

0.05 % Secondary 

* “Uncertainty” relates to the lowest value typically attainable in a laboratory 
environment 

 

 

7.3 Multi-axis and dynamic calibration 
 
All the above techniques and standards have been developed for the calibration of systems to measure static 
forces acting along a single well-defined axis. Calibrations are also required for multi-axis situations and for 
systems that measure non-static (dynamic) forces. 
 
Multi-axis calibration is similar to single axis calibration but is carried out once per axis. The calibration of 
multi-component force sensors is more demanding on the equipment, although the principles remain the same. 
Measurement of cross talk requires some new considerations. Cross talk is the effect of a calibration force 
applied along one axis on a different component, for example an output on the x-axis transducer caused by a y-
component force. To determine the magnitude of cross talk effects, it may be necessary to construct special 
purpose calibration machines or fixtures.  
 
Dynamic force calibration is not yet an established procedure [29]. Statically derived force transducer 
sensitivities are generally assumed to be applicable for dynamic force measurements. The dynamic behaviour 
(natural frequency) of load washers or dynamometers depends very much on the stiffnesses and weights of the 
components within the structure where the sensor is mounted.  
 

7.4 Methodology 
 
There are three main calibration options available for establishing the uncertainty of the force measurement 
system. The first is to leave the force transducer in its permanently installed position and use a transfer standard 
to carry out the calibrations. The second is to calibrate the force transducer prior to installation and remove as 
required for further calibrations. The final option is to calibrate the force transducer prior to its permanent 
installation in the force measurement system and then not to recalibrate during the life of the installation. 
 

7.4.1 Permanently installed transducer with transfer standard 
 

The preferred option for a system which requires a low level of uncertainty is to permanently install the force 
transducer, then use a transfer standard to provide regular calibrations. Prior to installation the permanent force 
transducer should be calibrated over its full operational range, replicating where possible the anticipated 
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operational conditions including the range, direction, rate of change, and duration of applied force, as well as 
temperature and simulation of a typical working cycle. This initial calibration, which may have been carried out 
by the manufacturer prior to delivery, is used to determine creep, non-return to zero, hysteresis, and non-
linearity.  
 
At suitable intervals during the life of the system, a transfer standard is installed in the rig in series with the 
permanent device and the outputs are compared over a range of applied forces. These calibrations ensure that 
the uncertainty level is maintained, and also assist in identifying any changes or problems to the installation or 
transducer. The use of automated calibrations may be appropriate when trying to meet low limits of uncertainty 
and/or tight calibration time-scales. Automated calibration may more accurately reflect the operational 
conditions of the force measurement transducer and hence can reduce the system uncertainty. 
 
7.4.2 Removable force transducer 
 
If the force transducer can be removed from the installation, then in addition to the initial calibration the 
transducer may be removed periodically for re-calibration against a standard. This method gives an accurate 
calibration to the transducer, but may not take into account uncertainty sources in the installation such as 
friction, lever ratios, and alignment. The instrumentation may be calibrated with the transducer or separately 
against another standard. 
 
7.4.3 Permanently installed force transducer without transfer standard 
 
A permanently installed force transducer without periodic calibration may be considered when both removal 
and in situ calibration are impractical. The initial calibration should establish a level of uncertainty well within 
the system requirements to accommodate drift and deterioration in the force transducer during its operational 
life. Some confidence in the ongoing operational uncertainty may be achieved by periodically performing a shunt 
calibration and checking one or more well-defined operating points including zero applied force. Any traceability 
claims for such systems need to take into account the uncertainty associated with the shunt calibration method. 
The use of force transducers with more than one independent strain gauge bridge can increase the measurement 
confidence by comparing the output of one against the other and having the system report deviations outside 
pre-set limits. 
 

7.5 Calibration procedures 
 
7.5.1 Specifying the calibration 
 
When planning the calibration of a force measurement system, the user needs to consider the following 
questions: 
 
When to calibrate? 

Different transducers operated under different conditions and with different uncertainty specifications will need 
re-calibrating at different intervals. A good starting point for deciding on calibration interval will be the 
manufacturer’s literature for the device, particularly the specification for long-term stability. If after several 
calibrations it is apparent that the interval is too long (the sensitivity changes significantly each time) or too 
short (there is no appreciable change in sensitivity) then the period may be adjusted accordingly [15]. However, 
recalibration periods are purely a recommendation and apply to normal service conditions, the periods having 
been derived from empirical testing of systems returned for recalibration. However, there are several factors 
that may influence the need for more or less frequent recalibrations, including: 
 

• environmental conditions 
• the ramifications of operating transducers that do not perform to specification and the 
consequences of relying on the inaccurate data so produced 
• the frequency and duration of use 
• harsh treatment of the transducer during storage, transportation, or use 
• the level of accuracy required by the user 
• the requirements of QA procedures 

 
Ultimately it is for the user to determine the appropriate calibration period given the operational environment 
and performance requirements. 
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Whether to undertake the operation ‘in-house’ or subcontracted? 

With suitable expertise, calibrations can be carried out successfully by the user without sending instruments to 
an outside laboratory. However, setting up an in-house calibration facility may require considerable investment 
in equipment and training. It is often better to have the work done by an expert laboratory, preferably one which 
holds a recognised measurement accreditation. 
 
Calibrate in situ or in a laboratory? 

The ideal environment for a calibration of an instrument is usually considered to be a laboratory, where 
controlled and stable reference conditions can be provided. However, there are often good reasons for 
performing in situ calibration such as convenience, cost, to avoid disturbing the instrument, or to calibrate it 
under the exact conditions of use. 
 
Calibrate the whole system or just the transducer? 

Normally it is best to calibrate the entire measurement chain from transducer to indicator using the same cables, 
instruments, and power supplies as are used during normal operation. Sometimes this is impractical in which 
case the transducer and instrumentation should be calibrated separately to traceable standards. 
 
Whether to request adjustment? 

Calibration is sometimes taken to mean "adjustment of an instrument to read correctly", which is not true. 
Calibration and adjustment  are quite separate concepts, and the two should not be confused. Thus, when 
arranging for the calibration of a force measuring system, it is important to establish clearly whether or not the 
system is to be adjusted as well as calibrated. If so, it should be specified whether calibration information is 
required only after adjustment, or whether results are also required for the initial or "as found" condition. Such 
“as found” information may be vital for traceability of the process within which the force measurement is made. 
 
What is the required uncertainty level? 

Both in the calibration and use of a force measurement system, the level of uncertainty needs to be considered. 
Some types of uncertainty can be quantified in terms of statistical techniques, such as standard deviation or 
spread, and these (often related to random effects) are known as Type A components. Uncertainties derived by 
any other method are known as Type B components. The combined uncertainty for a measurement is the 
combination of all the sources of uncertainty for that particular measurement. It is usual to summate the 
individual uncertainties using the "root-sum-squares" method to obtain a combined uncertainty. Thus: 
 

combined uncertainty = [(u1)2 + (u2)2 + ... (un)2 ]0.5 

 
where u1, ... un are the individual uncertainty components, all expressed at the same level of confidence and in the 
same units. While uncertainties exist at all times in the use of a force measurement system, often the only time 
they are specifically referred to is during the process of calibration. For further information on uncertainty in 
force measurement, see [20]. 
 
The level of uncertainty required for the calibration of a force measurement system can only be determined by 
the user. The needs depend on the application and may be defined by the process (as in process control), by 
regulation (such as health and safety), or by standards in the particular industry. Calibration needs to be 
sufficient to meet these needs, but it would be wasteful to calibrate to too high a standard. If the force 
measurement requirement is 5 % of force applied then it would be a costly and pointless exercise to calibrate 
the device in a deadweight machine when a materials testing machine would do. As a guide, the uncertainty of 
measurement of the calibration machine should be three times better than the accuracy required from the 
system to be calibrated. For example, if the uncertainty requirement on the transducer is 3 % then the 
calibration force uncertainty should be less than 1 %. 
 
What is the direction of force and the operating range of force? 

The selection of the range of measurement should be carefully considered. A device is normally calibrated 
throughout its total range in tension and/or compression but, if it is only ever used at, for example, 20 % of rated 
force, it would not be necessary to calibrate it up to 100 %. In this case, limited calibrations are acceptable as 
long as the device is only then used within its calibrated range. 
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What are the end-loading conditions in the application? 

The end-loading conditions in the calibration should match as closely as possible those in the application.  
 
What is the temperature range for the application? 

The transducer should either be calibrated over the range of operating temperatures or its temperature 
sensitivity should be otherwise determined, possibly from the manufacturer’s specification, and the uncertainty 
quoted should include the temperature effects. 
 
 
7.5.2 Undertaking the calibration 
 
An appraisal of the uncertainties of measurement attributed to the calibration equipment and method must be 
calculated and budgeted. This will include all aspects such as uncertainty of the load application device, 
environmental effects, loading effects etc. A percentage amount, either calculated or estimated, is attributed to 
each effect likely to be present. 
 
Before taking any calibration readings the transducer should be pre-loaded up to at least its rated force, or 
preferably more (typically 10 % above), and back to zero several times. This is to ensure that any mechanical or 
electrical connection, offsets, or mismatches have been allowed to ‘settle-in’. 
 
Generally in a complete calibration cycle the force is applied incrementally up to the rated force and then 
reduced back down to zero. The result is the calibration curve, which is used to establish the calibration values of 
sensitivity, linearity, and hysteresis. 
 
Repeatability is probably the most important factor governing the suitability of a force transducer for its desired 
function. Depending on the uncertainty of measurement required it is advisable to calibrate the device at the 
same force a minimum of two (preferably three) times. Following the assessment for repeatability, it is advisable 
to check the device’s short-term reproducibility. The most common simple method is to remove and replace the 
transducer in the calibration machine before carrying out a further calibration run. 
 
When taking measurements, the applied force should always be approached from the same direction, and 
allowed to stabilise before a reading is taken. Also it is important that zero force is a well-defined mechanical 
point at the same level and direction, taking account of backlash etc. Should any measurement point be overshot 
in the sequence, then the applied force should be reversed beyond the required level and the force approached 
from the correct direction again.  
 
7.5.3 Analysis of the calibration data 
 
Analysis of the calibration data will often be carried out by the calibration laboratory and a calibration 
certificate supplied to the user when the transducer is returned. An example of a calibration certificate is given 
in Figure 15. The user would be well advised to consider some of the following points regarding the data and the 
use he will make of it. 
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Figure 15. An example calibration certificate 
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Check uniformity of results and range of errors 

Confidence levels and uncertainties can be calculated from the numbers in the table, following the methods given 
in [26], but many users will simply wish to check that the range of errors (particularly the worst case) is well 
within their process needs. 
 
Check for anomalies and bias 

A simple review of the figures in the table will help to discover any regular bias or systematic errors. 
 
Check that accuracy is within process needs 

The calibration data may be expressed graphically. Typically, on devices that require uncertainty of 
measurement of no better than 0.5 % a linear interpolation between calibration points can be performed (i.e. a 
straight line between points). Otherwise a polynomial equation should be fitted to the calibration data. Any 
calibration corrections identified on a certificate of calibration should be applied to measured values obtained 
using that instrument. If the calibration corrections cannot be applied, the quoted uncertainty in the results 
should include an allowance for this. If this results in the uncertainty exceeding the requirements, consideration 
should be given to adjusting the instrument’s set points, taking the measured deviations into account, and then 
recalibrating it. 
 
Look at the history of the device – are there any unexpected changes? 

The calibration history of a device (the ‘as found’ and ‘after adjustment’ curve at each calibration) may be an 
important element in the traceability of the machine or process in which the transducer is used. The history 
should be carefully kept following quality assurance rules. 
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8 QUALITY ASSURANCE OF FORCE MEASUREMENTS 
 

8.1 Measurement accreditation 
 
Many organisations are granted a recognised certification or accreditation for their activities. Certification may 
cover an organisation’s overall quality management system, e.g. BS EN ISO 9000 [14] series. However, a 
generalised quality certification does not address the details of specialised technical practices. Accreditation, on 
the other hand, means that certain aspects of their business have been independently assessed, and that they 
comply with given criteria of competence and quality. 
 
The United Kingdom Accreditation Service (UKAS) accredits calibration and testing laboratories to provide 
assurance that measurements are carried out to the highest standards of technical competence, traceable to 
recognised national or international standards, using agreed methods, and with realistic statements of 
uncertainty. The UKAS regulations are based on the international standard for the operation and accreditation of 
laboratories, BS EN ISO/IEC 17025 [16]. UKAS certificates are widely recognised and accepted throughout the 
UK and the rest of the world. 
 
Counterparts of UKAS exist in many other countries, and in many cases are recognised as being equivalent. 
Formal agreements provide for the mutual recognition of certificates from different national accreditation 
schemes. The European co-operation for Accreditation (EA) is the body that is the focus for multilateral 
recognition among national measurement accreditation schemes in Europe, and ILAC is the international 
equivalent. 
 

8.2 Competence in force measurement 
 
What is assured when a laboratory or its personnel are said to be have technical competence in force 
measurement? Well, reading this Guide does not in itself lead to competence! Practical skill and experience are 
also required. However, it can safely be said that if personnel are to be considered to be competent in force 
measurement, they should be familiar with much - if not all - of the information in the preceding chapters, for 
those kinds of instrument they use. 
 
This document is a guideline, not a prescriptive specification or accreditation standard. However, it does 
summarise most of the widely accepted best practices in force measurement. Therefore, it is reasonable to 
expect that any force laboratory that has passed a UKAS or equivalent assessment by an expert in the field will 
generally follow the practices described in this Guide. This does not mean, of course, that a competent laboratory 
need necessarily undertake all the types of measurement described here. Nor does it mean that they need use 
this document in order to be applying the good practices described here. 
 
Broadly speaking, therefore, a competent laboratory (whether accredited or not) could be expected to 
implement most of the recommended practices in Sections 6 and 7 for those types of force measurement they 
undertake. Laboratory personnel competent in force measurement could be expected to be familiar with the 
instrument characteristics listed in Section 4 for any instrument types they deal with. 
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9  EXAMPLE APPLICATIONS 
 

9.1 Example:  Measurement of web tension  
 
From a manufacturer’s enquiry sheet we find that a customer wishes to measure a normalised web tension of 
5 kN per metre width in a continuous production process on a 2 metre wide roller. The roller has a mass of 
750 kg, the material of the web is wrapped 110 around the roller, and the exit angle of the web is 10 from 
vertical. The maximum tension T is thus given by: 
 

T = 2 m × 5 kN·m-1 = 10 kN. 
 
The arrangement is shown in Figure 16, and the resultant web forces can be calculated by means of a vector 
diagram as shown in Figure 17. 

 

T=10 kN

60°

10°

T = 10 kN  

 

 

 

Figure 16. Forces on the roller Figure 17. Vector diagram of forces 

 
If T is the web tension then R is the resultant force acting on the roller due to the web tension. R may itself be 
resolved into vertical and horizontal force components R1 and R2 as shown in the figure. The force due to gravity 
acting on the mass of the roller is shown as W. 
 
There are two possible ways of measuring the tension, given below as solution 1 and solution 2. 
 
9.1.1 Solution 1 
 
One possible solution is to install force transducers that go into the bearing assembly that can be orientated in 
rotation so that their measuring axis is aligned with the resultant force R and thus only measure that component. 
Figure 18 shows the roller mounted on alignable force transducers. 
  

The resultant force R  
= T cos (30+25) + T cos (55) 
= 2 T cos (55) 
= 2 × 10 cos (55)  
= 20 × 0.573 6  
= 11.47 kN 
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Figure 18. Alignable force transducers 

 
The force per side, (assuming one support point either side) 

= 11.47 / 2 
= 5.74 kN 

 
Mass suspended per side   = 750 kg / 2 

      = 375 kg  
 
 Force acting due to mass of roll (W)  = 375 × 9.81 kg m s-2 
      = 3.68 kN 
  
From the calculations above it can be seen that the chosen force transducer must be capable of measuring a force 
of 5.74 kN along its principal axis and supporting and ignoring a side force of 3.68 kN at 65° to that axis. 
 
Let us assume that the nearest capacity force transducer to do this is rated at 10 kN, remembering to always go 
to the next capacity up and to consider start-up and deceleration forces which may be greater than average. This 
will be, for example, connected to a force transducer signal conditioner (usually a combined power supply and 
amplifier) with 10 volts output and a digital display. 
 
Then the system scaling would be: - 
 
A force of 5.74 kN on a 10 kN capacity force transducer is scaled as a 0 V to 10 V output and reads 0.00 kN·m-1 to 
5.00 kN·m-1 on the digital display. 
 
9.1.2 Solution 2 
 
A second solution is to install force transducers that go under the roller bearings and measure the vertical 
component of the tension R1 in addition to the force acting on the roll due to gravity, as shown in Figure 19. 
 
The vertical component R1 of force due to the web tension 

     = R cos (55 + 10) 
= 11.47 kN × 0.422 6 
= 4.85 kN 
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Figure 19. Force transducers in solution 2 

 
Force per side     = 4.85 kN / 2 
     = 2.43 kN 
 
The horizontal component R2 of force due the web tension 
 

  = R sin (65)  
  = 11.47 kN × 0.906 3  
  = 10.4 kN 

 
Force per side     = 10.4 kN / 2 
     = 5.2 kN 

 
If the force transducers chosen only measure in the vertical direction then total force to be measured in the 
vertical direction is 2.43 kN + 3.68 kN = 6.11 kN. 
 
The chosen force transducer must be capable of measuring a force of 6.11 kN along its principal axis and capable 
of withstanding 5.2 kN in its side axis. That is, it must withstand and ignore 85 % side force compared with the 
force along its principal axis! 
 
Supposing the next highest capacity force transducer above 6.11 kN is 10 kN. This will be, for example, connected 
to a force transducer signal conditioner (usually a combined power supply and amplifier) with 10 volts output 
and a digital display. 
 
Then the system scaling would be:- 
 
a force of 2.43 kN on a 10 kN capacity force transducer on top of a tare force offset of 3.68 kN is scaled as a 0 V to 
10 V output and reads 0.00 kN·m-1 to 5.00 kN·m-1 on the digital display; 
 
or, 
 
a force change of 3.68 kN to 6.11 kN on a 10 kN capacity force transducer, is scaled as a 0 V to 10 V output and 
reads 0.00 kN·m-1 to 5.00 kN·m-1 on the digital display. 
 
 

9.2 Example:  Force measurement on a mechanically-driven power press 
 
Press load monitoring is a technique now generally used in industry where the press and tool damage caused by 
excessive force is minimised by detecting the force level using sensors mounted on the press or in the tool. If the 
maximum value of the force exceeds a pre-set value the monitor signals the press to stop. Monitors can also be 
supplied to check for underload such that if the peak force does not reach a specified value then press operation 
will be stopped. 
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Curve monitoring systems check the complete force curve and if any point on the curve deviates either from its 
correct force or crank angle position then press operation will be stopped or an alarm activated to indicate a 
quality deviation. 
 
9.2.1 Machine force monitors 
 
Force monitors operate by using strain sensors mounted in various key locations to measure strains that are 
proportional to the applied force. The general rule is that sensors should be mounted as close to the tool as is 
practical. This becomes more particularly important with curve monitoring systems. Figure 20 shows typical 
locations, namely: 
 
 Frame (1), 
 Tiebeam (2), 
 Connecting rods (3), 
 Tool/die (4). 
 

 

Figure 20. Sensor locations on a C-frame press 

 
9.2.2 In-tool measurement of force 

A typical application of in-tool force measurement is shown in Figure 21 for a blank and draw tool in a power 
press. The force transducer mounted in the die checks for peak force and also a number of material properties 
and other features. Examples of measured curves are given in Figure 22 to illustrate the effect of material 
hardness changes. Tool wear and material thickness variations can also be monitored. 

Note in Figure 21 the gap between the punch block and the support block. This gap exists so that all the force 
passes through the force transducer. If the punch block contacts the support block at any time then a force shunt 
is created and a measurement error introduced. 

 

 

Figure 21. Blank and draw tool 
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Figure 22. Load curve examples 

 
 

9.3 Example:  Spring force test on a personal computer mouse 
 
A company that made computer mice needed to check the spring force of the buttons to ensure the correct ‘feel’. 
A small test station was designed to ensure that the force at the click point was in the range of 450 mN to 
700 mN. This test rig incorporated two piezoelectric transducers. The output was fed to amplifiers with a built-in 
monitoring facility that detected springs that were not within the specified range. This system allowed the user 
to accumulate data for automatic statistical quality control of the process. Figure 23 shows an example curve of 
results with the ‘down-click’ at about 8 seconds and the ‘up-click at about 25 seconds. 
 

 

Figure 23. Response curve from mouse ‘click’ testing 

 

9.4 Example:  Force measurement in bio-mechanics 
 
An application of multi-component force transducers is the measurement of locomotion forces using a force 
dynamometer or force plate. These devices are made by mounting a plate on four suitably-rated multi-
component force transducers, as shown in Figure 24. The outputs from each transducer can then be added in 
each axis to give total force in that direction, or the difference in forces on each support point can be used to 
calculate the centre of force action in any axis.  
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The calculation software and display for such a system would normally be provided as a complete unit by the 
manufacturer. The user would need to specify the magnitude of forces along each axis, the maximum rate of 
change of those forces and size of plate required. 
 
Force plates are extensively used in clinical measurement of patients with gait problems such as patients with 
cerebral palsy or those with lower limb amputation to optimise the artificial limbs provided or to correct gait 
problems (see the example in Figure 25). 
 
These devices are also extensively used in sports science to gain an accurate measurement of the ground 
reaction forces so that performance can be optimised. This is particularly important for international 
competitors where even a small improvement can be critical. 
 

 
 

 
 
 

 

 

Figure 24. A transparent multi-component 
force plate 

 

Figure 25. Example of human gait analysis 

 

 
Applications for force plates also include studies to optimise the design of sports shoes; for analysing the 
movement of various animals, particularly racehorses; to determine the safety of floor coverings (liability to 
cause slip). Industrial applications include the measurement of the thrust of rockets and torque measurements 
on motors attached to the surface of the plate. 
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11 INDEX 
 

A 

accreditation, 36 
adjustment, 32 
analogue output, 24 
artefact, 3 
axial alignment of force, 7 
axle load, 20 

B 

bi-directional force transducer, 22 
bus, 24 

C 

cable laying, 19 
calculated value, 4 
calibration, 4, 29 
calibration certificate, 33 
calibration facility, 32 
calibration history, 35 
calibration interval, 31 
capacitive load cells, 16 
charge amplifier, 13 
combined error, 5 
combined uncertainty, 32 
competence in force measurement, 36 
component testing, 18 
creep, 6 
creep recovery, 6 
cross talk, 30 
cutting force and torque, 20 

D 

data collection, 24 
deadweight machines, 30 
device, 4 
digital output, 24 
disturbances, 6 
documentary standard, 3 
drilling force, 20 
dynamic force, 7 
dynamic force calibration, 30 
dynamic overload, 26 

E 

EA (European co-operation for Accreditation ), 36 
elastic element, 9 
electrical resistance strain gauges, 10 
environment, 24 
error of measurement, 5 

F 

fatigue life, 7 
foil strain gauge, 10 
force, 2 
force balance, 17 

force dynamometer, 23, 41 
force measurement system, 4 
force measuring pins, 14 
force plate, 41 
force proving instruments, 29 
force shunts, 25 
force standard machines, 29 
force transducer, 4 
force transfer standard, 29 
frequency response, 7 
full-scale output (fso), 5 

G 

gas turbine thrust, 18 
gauge factor, 11 
gyroscopic load cells, 17 

H 

hydraulic amplification machines, 30 
hydraulic load cell, 15 
hysteresis, 5 

I 

in situ calibration, 32 
indicated value, 4 
influence quantities, 6 
installation, 25 
instrumentation, 4 
interference-optical load cell, 16 
international standard, 29 
interpolation classification, 29 
intrinsically safe operating system, 24 
IP code, 25 

L 

level of confidence, 4 
lever amplification machines, 30 
linear variable differential transducer (LVDT), 16 
load, 3 
load cell, 4 
loading column, 15 
loading conditions, 6 
loading surfaces, 6 
long-term stability, 7 

M 

magneto-elastic force transducer, 17 
mass, 2 
material measure, 3 
materials testing machines, 18, 29 
measuring instrument, 4 
metal rolling, 19 
metrology, 1 
mooring forces, 20 
multi-axis calibration, 30 
multi-component piezoelectric force transducers, 14 
mV/V, 11 
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N 

national standard, 29 
natural frequency, 6 
newton, 3 
non-linearity, 5 

O 

optical strain gauge, 16 
output, 4 
overload, 3 

P 

piezoelectric crystal, 13 
pipe-laying tension, 19 
plastic deformation, 17 
pneumatic load cell, 15 
pressing sheet metal, 20 
primary standards, 29 
principal axis, 3 
process weighing, 21 
proving ring, 15 

Q 

quartz force transducer, 13 

R 

rated capacity, 4 
rated output, 5 
reaction, 3 
reference force transducer machines, 30 
repeatability, 5 
reproducibility, 6 
response curve, 4 

S 

safety requirements, 24 
scientific notation, 2 
secondary standards, 29 
semiconductor strain gauges, 11 
sensitivity, 5 

shear pin force transducers, 19 
shunt calibration, 26 
shunt resistor, 12 
SI, 2 
side forces, 26 
six-wire connection technique, 12 
slew, 24 
span, 5 
specific forces classification, 29 
specification, 4 
standard, 3 
strain-gauged hydraulic machines, 30 
surface-wave resonator, 16 

T 

temperature coefficient, 6 
tension leg platforms, 20 
thin-film strain gauges, 11 
thrust measurement. See gas turbine thrust 
torque measurement, 18 
traceability, 29 
transducer, 4 
transfer standard. See force transfer standard 
tuning-fork load cell, 16 

U 

UKAS, 36 
uncertainty, 4 

Type A components, 32 
Type B components, 32 

uni-directional force transducer, 22 
unit, 2 

V 

vibrating-wire transducer, 16 

W 

warm up, 25 
web tension, 19 
weight, 3 
wheatstone bridge configuration, 11 
wire strain gauge, 11 

  




